A body 'A' of mass 1.5kg travelling along the positive X-axis with speed of 4.5m/s collides with another body 'B' of mass 3.2kg,
which initially is at rest as a result of the collision, 'A' is deflected and moves in a speed of 2.1m/s in a direction which is at an angle of 30 degree below the X-axis. 'B' is set in motion at an angle Φ above the X-axis. calculate the velocity of 'B' after the collision.
Figure E is the correct representation of the first part of the motion. When in a hanging position from the chin-up bar, the bicep muscles are stretched beyond their normal length already. So at this point they are at the peak of their capacity and you are at rest (this corresponds to the velocity v = 0 at t = 0). On contracting the bicep muscles and pulling your whole body up, you begin to gain speed and v increases. This increase in velocity is exponential. Soon the bicep muscles contract up to 80% their normal length reducing the force they can produce to keep you rising up to zero. The velocity change happens because the body is accelerating and the muscles can still supply a net force to lift you up. The acceleration is present because of this net force. The moment this force reduces to zero, the acceleration too reduces to zero. (From Newton's second law of motion). This reduction in acceleration is responsible for the reduction of the curvature of the v curve in figure E above. The point where the velocity becomes horizontal corresponds to the point where the muscles reach their maximum contraction unit and can supply no more net force and as a result no acceleration. This further results inba constant velocity which is the flat nature of the curve seen in diagram E.
The period of oscillation of a mass-spring system is given by
where
T is the period
m is the mass hanging on the spring
k is the spring constant
As we see from the formula, the period of oscillation does not depend on the amplitude of the motion: therefore, if we change the amplitude, the time for one oscillation will not change.
Im not sure if this is right but here is the answer i think it is....So multiply 45 by 2.205 to get 99.225 pounds. Alternately, to convert from kg to Newtons, use the fact that 1 kg is 9.8 Newtons
The magnitude of the force on positive charges will be and the magnitude of the force on the negative charge is .
Explanation:
Given:
The value of the charges, .
The length of each side of the triangle, .
Consider a equilateral triangle , as shown in the figure. Let two point charges of magnitude are situated at points and and another point charge is situated at point .
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The value of the force on the charge at point due to charge at point is given by
The net resultant force on the charge at point is given by
Substitute for , for and for in equation (1), we have
Substitute for , for and for in equation (2), we have
Substitute for , for and for in equation (3), we have