The specific heat of mercury is 149.4 J/(kgK)
Explanation:
When a substance is supplied with an amount of energy Q, its temperature increases according to the equation:

where
is the increase in temperature
m is the mass of the sample
is its specific heat capacity
For the sample of mercury in this problem we have
Q = 275 J
m = 0.450 kg

Therefore, by re-arranging the equation we find the mercury's specific heat:

Learn more about specific heat capacity:
brainly.com/question/3032746
brainly.com/question/4759369
#LearnwithBrainly
Answer:
Time, t = 0.23 seconds
Explanation:
It is given that,
Initial speed of the ranger, u = 52 km/h = 14.44 m/s
Final speed of the ranger, v = 0 (as brakes are applied)
Acceleration of the ranger, 
Distance between deer and the vehicle, d = 87 m
Let d' is the distance covered by the deer so that it comes top rest. So,


d' = 26.06 m
Distance between the point where the deer stops and the vehicle is :
D=d-d'
D=87 - 26.06 = 60.94 m
Let t is the maximum reaction time allowed if the ranger is to avoid hitting the deer. It can be calculated as :


t = 0.23 seconds
Hence, this is the required solution.
Repeat the experiment to make sure it gives the same results.
Hope i helped ; )
“a point at which rays of light, heat, or other radiation meet after being refracted or reflected.” Meaning multiple light rays or heat (and other forms of radiation) are all being refracted or reflecting to a certain point