Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
The directions of the vectors for velocity and acceleration are in the opposite directions.
- The velocity vector is always in the direction of motion of the object. So, the direction of velocity is in the right from our point of view.
- When there is a positive acceleration in the object the acceleration vector is in the direction of motion of the object. When there is a negative acceleration in the object the acceleration vector is in the opposite direction of motion of the object. So, the direction of velocity is in the left from our point of view.
Velocity vector is the rate of change of position of an object. Acceleration vector is the rate of change of velocity of an object.
Therefore, the directions of the vectors for velocity and acceleration are in the opposite directions.
To know more about velocity and acceleration vectors
brainly.com/question/13492374
#SPJ4
Answer:
im very con fused on what you mean by this
Explanation:
Answer:
f =ma = 0.015 * 55 = 0.825 N
so yeah that's ur ans