Answer:
a)The approximate radius of the nucleus of this atom is 4.656 fermi.
b) The electrostatic force of repulsion between two protons on opposite sides of the diameter of the nucleus is 2.6527
Explanation:

= Constant for all nuclei
r = Radius of the nucleus
A = Number of nucleons
a) Given atomic number of an element = 25
Atomic mass or nucleon number = 52


The approximate radius of the nucleus of this atom is 4.656 fermi.
b) 
k=
= Coulombs constant
= charges kept at distance 'a' from each other
F = electrostatic force between charges


Force of repulsion between two protons on opposite sides of the diameter



The electrostatic force of repulsion between two protons on opposite sides of the diameter of the nucleus is 2.6527
ANSWER:
F(h)= 230 N is the horizontal force you will need to move the pickup along the same road at the same speed.
STEP-BY-STEP EXPLANATION:
F(h) is Horizontal Force = 200 N
V is Speed = 2.4 m/s
The total weight increase by 42%
coefficient of rolling friction decrease by 19%
Since the velocity is constant so acceleration is zero; a=0
Now the horizontal force required to move the pickup is equal to the frictional force.
F(h) = F(f)
F(h) = mg* u
m is mass
g is gravitational acceleration = 9.8 m/s^2
200 = mg*u
Since weight increases by 42% and friction coefficient decreases by 19%
New weight = 1+0.42 = 1.42 = (1.42*m*g)
New friction coefficient = μ = 1 - 0.19 = 0.81 = 0.81 u
F(h) = (0.81μ) (1.42 m g)
= (0.81) (1.42) (μ m g)
= (0.81) (1.42) (200)
= 230 N
Answer:
715 N
Explanation:
Since the system is moving at a constant velocity, the net force must be 0. The tension on the road is equal and opposite direction with the kinetic friction force created by the road and the stuntman.
Let g = 9.8 m/s2
Gravity and equalized normal force is:
N = P = mg = 107*9.8 = 1048.6 N
Kinetic friction force and equalized tension force on the rope is

Because there is no oxygen in space and we need oxygen to function so we need the suit to incapsulate us in oxygen so we can respire and so can our skin