C. endothermic
An endothermic process takes heat from the surroundings while an exothermic process gives out heat to the surroundings.
Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

From the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
<h3>What is the frequency of a wave?</h3>
The frequency of a wave is the number of complete oscillation per second completed by a wave.
Frequency is related to wavelength and speed by the following formula:
- Frequency = velocity/wavelength
Velocity of sound in air = 330 m/s
The measured wavelength = 5.0 cm = 0.05 m
Frequency = 330/0.05 = 6660 Hz
Therefore, based on the measured wavelength from diagram, the frequency of the sound is 6660 Hz.
Learn more about frequency of sound at: https://brainly.in/question/15373132
#SPJ1
Answer:
24.531 m
Explanation:
t = Time taken = 1.7 s
u = Initial velocity = 6.1 m/s
v = Final velocity
s = Displacement
g = Acceleration due to gravity = 9.81 m/s² = a
Equation of motion

The initial height of the rock above the ground is 24.531 m
I would say option D, it depends on the size of the star