The temperature of the early solar system explains why the inner planets are rocky and the outer ones are gaseous. As the gases coalesced to form a protosun, the temperature in the solar system rose. In the inner solar system temperatures were as high as 2000 K, while in the outer solar system it was as cool as 50 K. In the inner solar system, only substances with very high melting points would have remained solid. All the rest would have vaoprized. So the inner solar system objects are made of iron, silicon, magnesium, sulfer, aluminum, calcium and nickel. Many of these were present in compounds with oxygen. There were relatively few elements of any other kind in a solid state to form the inner planets. The inner planets are much smaller than the outer planets and because of this have relatively low gravity and were not able to attract large amounts of gas to their atmospheres. In the outer regions of the solar system where it was cooler, other elements like water and methane did not vaporize and were able to form the giant planets. These planets were more massive than the inner planets and were able to attract large amounts of hydrogen and helium, which is why they are composed mainly of hydrogen and helium, the most abundant elements in the solar system, and in the universe
https://lco.global/spacebook/planets-and-how-they-formed/
hope it helps
Answer:
c. 3/2 mg
Explanation:
Given that the acceleration of an elevator is 1/2 g upward.
The reading on the scale of the elevator is the net external force acting on the elevator.
Let the force F acting on the elevator as shown,
By using Newton's 2nd law, 
where,
is the net force acting on the elevator.
m is the mass of the elevator,
a is the acceleration of the elevator, as given a=1/2 g upward.
So, 

So, the reading on the scale in the elevator is
.
Hence, option (c) is correct.
You in college stop cheating
Answer:
q = 0.0003649123 m²/s = (3.65 × 10⁻⁴) m²/s
Explanation:
For laminar flow between two parallel horizontal plates, the volumetric flow per metre of width is given as
q = (2h³/3μ) (ΔP/L)
h = hydraulic depth = 4mm/2 = 2mm = 0.002 m
μ = viscosity of oil (SAE 30) at 15.6°C = 0.38 Pa.s
(ΔP/L) = 26 KPa/m = 26000 Pa/m
q = (2h³/3μ) (ΔP/L)
q = (26000) × (2(0.002³)/(3×0.38))
q = 0.0003649123 m²/s = (3.65 × 10⁻⁴) m²/s
Deciliter = 1/10 of a liter
Milliliter = 1/1000 of a liter
So, there are 100 milliliters in one deciliter