1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
14

What are energy sources​

Physics
1 answer:
ladessa [460]3 years ago
7 0

Answer:

Solar Energy. The primary source of energy is the sun.

Wind Energy. Wind power is becoming more and more common.

Geothermal Energy.

Hydrogen Energy

Tidal Energy.

Wave Energy.

Hydroelectric Energy.

Biomass Energy.

Explanation:

You might be interested in
Ejection of Electrons from Hydrogen by Incident Photons Light of wavelength 80 nm is incident on a sample of hydrogen gas, resul
timofeeve [1]

Answer:

a)   K_{max} = 1.9 eV = 3.04 10⁻¹⁹ J,b ) This means that some electrons are at the first excited level of the hydrogen atom, which is highly likely as the temperature rises.

Explanation:

a) To calculate the maximum kinetic energy of the expelled electrons let's use the relationships of the photoelectric effect

      K_{max}= h f - Φ

Where K is the kinetic energy, h the Planck constant that is worth 6.63 10⁻³⁴ Js, f the frequency and Φ the work function

The speed of light is related to wavelength and frequency

     c = λ f

Let's analyze the work function, it is the energy needed to start an electron from a metal, in this case to start an electron from a hydrogen atom its fundamental energy is needed, so

     Φ= E₀ = 13.6 eV

let's replace and calculate the energy of the incident photon

     E = h c / λ

     E = 6.63 10⁻³⁴ 3 10⁸/80 10⁻⁹

     E = 2,486 10⁻¹⁸ J

Let's reduce to eV

     E = 2,486 10⁻¹⁸ (1 eV / 1.6 10⁻¹⁹)

     E = 15.5 eV

Now we can calculate the kinetic energy

     K_{max}= h c / f - fi

      K_{max} = 15.5 -13.6

     K_{max} = 1.9 eV

b)     Extra energy = 10.2 eV

The total kinetic energy of electrons is

       Total kinetic energy = 1.9 +10.2 = 12.1 eV

For the calculation we are assuming that all the electors are in the hydrogen base state, but for temperatures greater than 0K some electors may be in some excited state, so less energy is needed to tear them out of hydrogen atom.

Let's analyze this possibility

      ΔE = E photon - Total kinetic energy electron

      ΔE = 15.5 - 12.1

      ΔE = 3.4 eV

If we use the Bohr ratio for the hydrogen atom

     E_{n} = 13.606 / n2

     n = √ 13.606 / En

     n = √ (13606 / 3.4)

     n = 2

This means that some electrons are at the first excited level of the hydrogen atom, which is highly likely as the temperature rises.

8 0
3 years ago
Compare wave A with wave B correctly in relation to amplitude.
olga nikolaevna [1]
We know for a fact that D and A can be eliminated from the answer choices because those are both false. we know that both B and C are both very accurate knowing that wave B does have a higher pitch than wave A but also wave A has a louder sound wave than wave B. so i'd say the answer is (C).
8 0
3 years ago
Thermodynamic Processes: An ideal gas is compressed isothermally to one-third of its initial volume. The resulting pressure will
djyliett [7]

Answer:

The resulting pressure is 3 times the initial pressure.

Explanation:

The equation of state for ideal gases is described below:

P\cdot V = n \cdot R_{u}\cdot T (1)

Where:

P - Pressure.

V - Volume.

n - Molar quantity, in moles.

R_{u} - Ideal gas constant.

T - Temperature.

Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:

P_{1}\cdot V_{1} = P_{2}\cdot V_{2} (2)

If we know that \frac{V_{2}}{V_{1}} = \frac{1}{3}, then the resulting pressure of the system is:

P_{2} = P_{1}\cdot \left(\frac{V_{1}}{V_{2}} \right)

P_{2} = 3\cdot P_{1}

The resulting pressure is 3 times the initial pressure.

4 0
2 years ago
You are pulling a child in a wagon. The rope handle is inclined upward at a 60∘ angle. The tension in the handle is 20 N.
dem82 [27]
  • Angle (θ) = 60°
  • Force (F) = 20 N
  • Distance (s) = 200 m
  • Therefore, work done
  • = Fs Cos θ
  • = (20 × 200 × Cos 60°) J
  • = (20 × 200 × 1/2) J
  • = (20 × 100) J
  • = 2000 J

<u>Answer</u><u>:</u>

<u>2</u><u>0</u><u>0</u><u>0</u><u> </u><u>J</u>

Hope you could get an idea from here.

Doubt clarification - use comment section.

6 0
2 years ago
Read 2 more answers
In a nuclear physics experiment, a proton (mass 1.67×10^(−27)kg, charge +e=+1.60×10^(−19)C) is fired directly at a target nucleu
Arte-miy333 [17]

The given question is incomplete. The complete question is as follows.

In a nuclear physics experiment, a proton (mass 1.67 \times 10^(-27)kg, charge +e = +1.60 \times 10^(-19) C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed 2.50 \times 10^6 m/s. The proton comes momentarily to rest at a distance 5.31 \times 10^(-13) m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are 5.31 \times 10^{-13} m apart?

Explanation:

The given data is as follows.

Mass of proton = 1.67 \times 10^{-27} kg

Charge of proton = 1.6 \times 10^{-19} C

Speed of proton = 2.50 \times 10^{6} m/s

Distance traveled = 5.31 \times 10^{-13} m

We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.

  (K.E + P.E)_{initial} = (K.E + P.E)_{final}

 (\frac{1}{2} m_{p}v^{2}_{p}) = (\frac{kq_{p}q_{t}}{r} + 0)

where,    \frac{kq_{p}q_{t}}{r} = U = Electric potential energy

     U = (\frac{1}{2}m_{p}v^{2}_{p})

Putting the given values into the above formula as follows.

        U = (\frac{1}{2}m_{p}v^{2}_{p})

            = (\frac{1}{2} \times 1.67 \times 10^{-27} \times (2.5 \times 10^{6})^{2})

            = 5.218 \times 10^{-15} J

Therefore, we can conclude that the electric potential energy of the proton and nucleus is 5.218 \times 10^{-15} J.

4 0
3 years ago
Other questions:
  • The force on a wire is a maximum of6.71 10-2 N when placed between the pole faces of a magnet.The current flows horizontally to
    7·1 answer
  • Mary slides down a snow-covered hill on a large piece of cardboard and then slides across a frozen pond at a constant velocity o
    6·1 answer
  • A proton is moving at 105 m/s at a point where the potential is 10 V. Later, it is at a place where the potential is 5 V. What i
    13·1 answer
  • What would the force be if the separation between the two charges in the top window was adjusted to 8.19 ✕10-11 m? (The animatio
    6·1 answer
  • A garden hose is attached to a water faucet on one end and a spray nozzle on the other end. The water faucet is turned on, but t
    8·1 answer
  • Expansion is greatest in A solid B gases C liquid D all​
    6·1 answer
  • Describe how noise-cancelling headphones modify the sound waves around the user. Your answer should be three to four sentences i
    13·1 answer
  • A boy is exerting a force of 70 N at a 50-degree angle on a lawnmower. He is accelerating at 1.8 m/s2. Round the answers to the
    15·1 answer
  • The water hyacinth was a major weed in Australian
    10·1 answer
  • Se deja caer una caja de madera de 4.5kg de masa desde una altura de 2.25metros .
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!