Answer:
Thermopile is an electronic device that converts thermal energy into electrical energy.
A Peltier cooler, heater, or thermoelectric heat pump is a solid-state active heat pump which transfers heat from one side of the device to the other, with consumption of electrical energy, depending on the direction of the current.
An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>
Answer:
R = 4.24 x 10⁻⁴ m
Explanation:
given,
mass of the person = 60.3-kg
mass of the bullet = 10 gram = 0.01 Kg
velocity of bullet = 389 m/s
angle made with the horizontal = 45°
using conservation of momentum.
M v + m u = ( M + m ) V
60.3 x 0 + 0.01 x 389 = (60.3 + 0.01) V


V = 0.0645 m/s
for calculation of range


R = 4.24 x 10⁻⁴ m
the distance actor fall is R = 4.24 x 10⁻⁴ m
Answer:
5.4 ms⁻¹
Explanation:
Here we have to use conservation of energy. Initially when the stick is held vertical, its center of mass is at some height above the ground, hence the stick has some gravitational potential energy. As the stick is allowed to fall, its rotates about one. gravitational potential energy of the stick gets converted into rotational kinetic energy.
= length of the meter stick = 1 m
= mass of the meter stick
= angular speed of the meter stick as it hits the floor
= speed of the other end of the stick
we know that, linear speed and angular speed are related as

= height of center of mass of meter stick above the floor = 
= Moment of inertia of the stick about one end
For a stick, momentof inertia about one end has the formula as

Using conservation of energy
Rotational kinetic energy of the stick = gravitational potential energy

Answer:
2.0 m/s/s
Explanation:
The acceleration of an object is the rate of change of velocity of the object.
Mathematically, it is given by:

where
u is the initial velocity
v is the final velocity
t is the time taken for the velocity to change from u to v
Acceleration is a vector, so it has both a magnitude and a direction.
For the runner in this problem, we have:
u = 0 is the initial velocity (he starts from rest)
v = 8.0 m/s is the final velocity
t = 4.0 s is the time taken
Substituting, we find
