1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natita [175]
2 years ago
13

4.2.5 quiz waves and technology

Physics
1 answer:
kolezko [41]2 years ago
6 0

Answer:

What’s the Question

Explanation:

You might be interested in
The first law of Thermodynamics is another way to describe the law of conservation of Energy. It states that:
nikitadnepr [17]

Answer:

C. The change of internal energy of a system is the sum of work and heat spent on it.

Explanation:

The law of conservation of Energy states that energy cannot be destroyed but can only be converted or transformed from one form to another. Therefore, the sum of the initial kinetic energy and potential energy is equal to the sum of the final kinetic energy and potential energy.

Mathematically, it is given by the formula;

Ki + Ui = Kf + Uf .......equation 1

Where;

Ki and Kf are the initial and final kinetic energy respectively.

Ui and Uf are the initial and final potential energy respectively.

The law of conservation of Energy is another way to describe the law of Thermodynamics. It states that the change of internal energy of a system is the sum of work and heat spent on it.

Mathematically, it is given by the formula;

ΔU = Q − W

Where;

ΔU represents the change in internal energy of a system.

Q represents the net heat transfer in and out of the system.

W represents the sum of work (net work) done on or by the system.

6 0
3 years ago
How could you weaken the force of gravity between cars and the Earth?<br>**I WILL MARK BRAINLEST**​
scoundrel [369]

Answer:

The answer you have selected is correct.

Explanation:

Increase radius, force of gravity decreases

6 0
3 years ago
2. A student places an object with a mass of m on a disk at a position r from the center of the disk. The student starts rotatin
ycow [4]

Answer:

\frac{0.065}{r}

Explanation:

The maximum velocity of an object moving in a curve beyond which it will slide off the curve is given by the relationship in equation (1);

v=\sqrt{\mu gr}....................(1)

where \mu is the coefficient of friction between the object and the surface of the curve, g is acceleration due to gravity and r is the radius of the curve.

Given;

v = 0.8m/s

g = 9.81m/s^2

r = ?

\mu=?

In order to solve for \mu, we can simply make it the subject of formula from equation (1) as follows;

v^2=\mu gr\\hence\\\mu=\frac{v^2}{gr}.................(2)

since we were not given the value of r, we can just substitute other known values, then solve and leave the answer in terms of r.

Therefore;

\mu=\frac{0.8^2}{9.81r}

\mu=\frac{0.64}{9.81r}\\\\\mu=\frac{0.065}{r}

8 0
3 years ago
If a nucleus decays by gamma decay to a daughter nucleus, which of the following statements about this decay are correct? (There
GarryVolchara [31]

Answer: Option (b) is the correct answer.

Explanation:

A gamma particle is basically a photon of electromagnetic radiation with a short wavelength.

Symbol of a gamma particle is ^{0}_{0}\gamma. Hence, charge on a gamma particle is also 0.

For example, ^{234}_{91}Pa \rightarrow ^{234}_{91}Pa + ^{0}_{0}\gamma + Energy

So, when a nucleus decays by gamma decay to a daughter nucleus then there will occur no change in the number of protons and neutrons of the parent atom but there will be loss of energy as a nuclear reaction has occurred.

Thus, we can conclude that the statement daughter nucleus has the same number of nucleons as the original nucleus., is correct about if  a nucleus decays by gamma decay to a daughter nucleus.

5 0
3 years ago
What happens if :<br> . The test charge is not tiny.
docker41 [41]

The magnitude of the test charge must be small enough so that it does not disturb the issuance of the charges whose electric field we wish to measure otherwise the metric field will be different from the actual field.

<h3>How does test charge affect electric field?</h3>

As the quantity of authority on the test charge (q) is increased, the force exerted on it is improved by the same factor. Thus, the ratio of force per charge (F / q) stays the same.

Adjusting the amount of charge on the test charge will not change the electric field force.

<h3>What is a test charge used for?</h3>

The charge that is used to measure the electric field strength is directed to as a test charge since it is used to test the field strength. The test charge has a portion of charge denoted by the symbol q.

To learn more about test charge, refer

brainly.com/question/16737526

#SPJ9

3 0
2 years ago
Other questions:
  • A cell phone weighing 80 grams is flying through the air at 15 m/s. What’s is it’s kinetic energy
    5·1 answer
  • Horatio used the flat end of a hammer to remove a nail from a piece of wood.
    14·2 answers
  • Una cuerda es puesta a vibrar 400 veces en 4 segundos Cual es la frecuencia del sonido emitido?
    7·1 answer
  • In a double-slit experiment, the slit separation is 2.0 mm, and two wavelengths, 750 nm and 900 nm, illuminate the slits. A scre
    6·1 answer
  • You pick up a 3.4-kg can of paint from the ground and lift it to a height of 1.8 m. (a) how much work do you do on the can of pa
    6·1 answer
  • A penguin slides at a constant velocity of 3.57 m/s down an icy incline. The incline slopes above the horizontal at an angle of
    10·1 answer
  • A baseball approaches home plate at a speed of 44.0 m/s, moving horizontally just before being hit by a bat. The batter hits a p
    15·1 answer
  • The ramp on the back of a moving van is in example of what type <br> simple machine
    5·2 answers
  • If the mass of the Jupiter is 1.9*10 kg and radius is fbx loom what is acclerallon due to gravity on the supiter ?​
    13·1 answer
  • What is the frequency of a photon with an energy of 4. 56 x 10^-19 j
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!