Answer: False
Explanation: They can see it by karst topography!
Answer:
4.981 MeV
Explanation:
The quantity of energy Q can be calculated using the formula
Q = (mass before - mass after) × c²
Atomic Mass of thorium = 232.038054 u, atomic of Radium = 228.0301069 u and mass of Helium = 4.00260. The difference of atomic number and atomic mass between the thorium and radium ( 232 - 228) and ( 90 - 88) show α particle was emitted.
1 u = 931.494 Mev/c²
Q = (mass before - mass after) × c²
Q = ( mass of thorium - ( mass of Radium + mass of Helium ) )× c²
Q = 232.038054 u - ( 228.0301069 + 4.00260) × c²
Q = 0.0053471 u × c²
replace 1 u = 931.494 MeV/ c²
Q = 0.0053471 × c² × (931.494 MeV / c²)
cancel c² from the equation
Q = 0.0053471 × 931.494 MeV = 4.981 MeV
Answer:

Explanation:
Given data
Time t=2.5 minutes=150 seconds
Distance A=1600 ft=487.68 m........east
Distance B=2500 ft=762m ........north
To find
Average velocity
Solution
First we need to find the resultant distance magnitude.To find that we apply Pythagorean theorem to find hypotenuse
So


answer:They are too close to the sun!
Explanation:Because Mercury is so close to the Sun and its gravity, it wouldn't be able to hold on to its own moon. Any moon would most likely crash into Mercury or maybe go into orbit around the Sun and eventually get pulled into it.Same with Venus!
Height of baby carriage from ground = 21m
Mass of carriage with baby = 1.5 kg
The carriage has potential energy by virtue of its height.
Potential energy = mgh = 1.5×10×21 = 315 J
Hence, potential energy of the carriage is 315 Joule.