There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Answer = 6.24x10^18 x ((2 x 3600) + (47 x 60) + 10)
Answer:

Explanation:
When the unpolarized light passes through the first polarizer, only the component of the light parallel to the axis of the polarizer passes through.
Therefore, after the first polarizer, the intensity of light passing through it is halved, so the intensity after the first polarizer is:

Then, the light passes through the second polarizer. In this case, the intensity of the light passing through the 2nd polarizer is given by Malus' law:

where
is the angle between the axes of the two polarizer
Here we have

So the intensity after the 2nd polarizer is

And substituting the expression for I1, we find:

If its accelerating it will increase velocity in the direction of the acceleration which is perpendicular to the velocity.
Answer:
depth of well is 163.30 m
Explanation:
Given data
speed of sound = 343 m/s
timer = 6.25 s
to find out
depth of well
solution
let us consider depth d
so equation will be
depth = 1/2 ×g ×t² ..............1
and
depth = velocity of sound × time .................2
here we have given time 6.25 that is sum of 2 time
when stone reach at bottom that time
another is sound reach us after stone strike on bottom
so time 1 + time 2 = 6.25 s
so from equation 1 and 2 we get
1/2 ×g ×t² = velocity of sound × time
1/2 ×9.8 × t1² = 343 × (6.25 - t1 )
t1 = 5.77376 sec
so height = 1/2 ×g ×t²
height = 1/2 ×9.8 × (5.773)²
height = 163.30 m