1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alekssr [168]
3 years ago
11

The flask contains 10.0 mL of HCl and a few drops of phenolphthalein indicator. The buret contains 0.160 M NaOH. It requires 18.

2 mL of the NaOH solution to reach the end point of the titration. A buret filled with a titrant is held above a graduated cylinder containing an analyte solution. What is the initial concentration of HCl
Chemistry
1 answer:
olchik [2.2K]3 years ago
5 0

Answer:

Approximately 0.291\; \rm M (rounded to two significant figures.)

Explanation:

The unit of concentration \rm M is the same as \rm mol \cdot L^{-1} (moles per liter.) On the other hand, the volume of both the \rm NaOH solution and the original \rm HCl solution here are in milliliters. Convert these two volumes to liters:

  • V(\mathrm{NaOH}) = 18.2\; \rm mL = 18.2 \times 10^{-3}\; \rm L = 0.0182\; \rm L.
  • V(\text{$\mathrm{HCl}$, original}) = 10.0\; \rm mL = 10.0\times 10^{-3}\; \rm L = 0.0100\; \rm L.

Calculate the number of moles of \rm NaOH in that 0.0182\; \rm L of 0.160\; \rm M solution:

\begin{aligned} n(\mathrm{NaOH}) &= c(\mathrm{NaOH})\cdot V(\mathrm{NaOH})\\ &= 0.160\; \rm mol \cdot L^{-1} \times 0.0182\; \rm L \approx 0.00291\; \rm mol\end{aligned}.

\rm HCl reacts with \rm NaOH at a one-to-one ratio:

\rm HCl\; (aq) + NaOH\; (aq) \to NaCl\; (aq) + H_2O\; (l).

Coefficient ratio:

\displaystyle \frac{n(\mathrm{HCl})}{n(\mathrm{NaOH})} = 1.

In other words, one mole of \rm NaOH would neutralize exactly one mole of \rm HCl. In this titration, 0.291\; \rm mol of \rm NaOH\! was required. Therefore, the same amount of \rm HC should be present in the original solution:

\begin{aligned}&n(\text{$\mathrm{HCl}$, original})\\ &= n(\mathrm{NaOH})\cdot \frac{n(\mathrm{HCl})}{n(\mathrm{NaOH})} \\ &\approx 0.00291\; \rm mol \times 1 = 0.00291\; \rm mol\end{aligned}.

Calculate the concentration of the original \rm HCl solution:

\displaystyle c(\text{$\mathrm{HCl}$, original}) = \frac{n(\text{$\mathrm{HCl}$, original})}{V(\text{$\mathrm{HCl}$, original})} \approx \frac{0.00291\; \rm mol}{0.0100\; \rm L} \approx 0.291\; \rm M.

You might be interested in
What happens when particles vibrate?
dusya [7]
<span>vibration of particles decreases as the temperature decreases It also decreases during phase change but temperature does not</span>
7 0
3 years ago
HELP!!!!!! PLEASE!!!
mixas84 [53]

Answer:

C

Explanation:

sorry if im wrong!!

7 0
2 years ago
Most common energy source in cellular respiration
topjm [15]

Answer: cytoplasm

Explanation:

7 0
3 years ago
Read 2 more answers
Ammonia is produced by the Haber process. The equation is shown.
choli [55]

Answer:

option D

Explanation:

Increasing the temperature increases the yield of ammonia and speeds up the reaction as chemical reaction is affected by temperature.

7 0
2 years ago
Read 2 more answers
Calculate the unit cell edge length for an 85 wt% fe-15 wt% v alloy. All of the vanadium is in solid solution, and, at room temp
Lady bird [3.3K]

Answer is 0.289nm.

Explanation: The wt % of Fe and wt % of V is given for a Fe-V alloy.

wt % of Fe in Fe-V alloy = 85%

wt % of V in Fe-V alloy = 15%

We need to calculate edge length of the unit cell having bcc structure.

Using density formula,

\rho_{ave}=\frac{Z\times M_{ave}}{a^3\times N_A}

For calculating edge length,

a=(\frac{Z\times M_{ave}}{\rho_{ave}\times N_A})^{1/3}

For calculating M_{ave}, we use the formula

M_{ave}= \frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{V}}{M_V}}

Similarly for calculating (\rho)_{ave}, we use the formula

\rho_{ave}= \frac{100}{\frac{(wt\%)_{Fe}}{\rho_{Fe}}+\frac{(wt\%)_{V}}{\rho_V}}

From the periodic table, masses of the two elements can be written

M_{Fe}= 55.85g/mol

M_{V}=50.941g/mol

Specific density of both the elements are

(\rho)_{Fe}=7.874g/cm^3\\(\rho)_{V}=6.10g/cm^3

Putting  M_{ave} and \rho_{ave} formula's in edge length formula, we get

a=\left [\frac{Z\left (\frac{100}{\frac{(wt\%)_{Fe}}{M_{Fe}}+\frac{(wt\%)_{Fe}}{M_{Fe}}}  \right )}{N_A\left (\frac{100}{\frac{(wt\%)_V}{\rho_V}+\frac{(wt\%)_V}{\rho_V}}  \right )}  \right ]^{1/3}

a=\left [\frac{2atoms/\text{unit cell}\left (\frac{100}{\frac{85\%}{55.85g/mol}+\frac{15\%}{50.941g/mol}}  \right )}{(6.023\times10^{23}atoms/mol)\left (\frac{100}{\frac{85\%}{7.874g/cm^3}+\frac{15\%}{6.10g/cm^3}}  \right )}  \right ]^{1/3}

By calculating, we get

a=2.89\times10^{-8}cm=0.289nm

7 0
2 years ago
Other questions:
  • Suppose you encounter a chemical formula with h as the cation. what do you know about this compound immediately?
    8·1 answer
  • Which term refers to a group of organisms with common characteristics and the ability to interbreed
    10·2 answers
  • What did Irene Joliot-Curie earn a Nobel Prize for?
    9·1 answer
  • 1. How many molecules are in 2.40 moles of H2O?
    6·1 answer
  • 12 +1<br><br> C<br><br>6<br><br><br>How many protons, electrons, and neutrons are there
    13·1 answer
  • A substance is tested in a lab. It is found to maintain a unique shape and is a good conductor of electricity. If it is made up
    5·2 answers
  • A galvanic cell is based on the following half-reactions at 279 K: Ag+ + e- → Ag Eo = 0.803 V H2O2 (aq) + 2 H+ + 2 e- → 2 H2O Eo
    14·1 answer
  • What is heat of vaporization?
    8·1 answer
  • Atoms and molecules sbr2
    10·1 answer
  • Balance this equation-<br> __P4+ __02 --&gt; __P2O3
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!