Answer:
213 nA
2.13 mA
851e^-t μA
Explanation:
We have a pretty straightforward question here.
Ohms Law states that the current in an electric circuit is directly proportional to the voltage and inversely proportional to the resistance in the circuit. It is mathematically written as
V = IR, since we need I, we can write that
I = V/R
a) at V = 1 mV
I = (1 * 10^-3) / 4.7 * 10^3
I = 2.13 * 10^-7 A or 213 nA
b) at V = 10 V
I = 10 / 4.7 * 10^3
I = 0.00213 A or 2.13 mA
c) at V = 4e^-t
I = 4e^-t / 4.7 * 10^3
I = 0.000851e^-t A or 851e^-t μA
Answer:
a. Acceleration, a = 1.88 m/s²
b. Time, t = 7.87 seconds.
Explanation:
Given the following data;
Initial velocity, U = 14.5m/s
Final velocity, V = 29.3m/s
Distance, S = 172m
a. To find the acceleration of the speedboat;
We would use the third equation of motion;
V² = U² + 2aS
Substituting into the formula
29.3² = 14.5² + 2a*172
858.49 = 210.25 + 344a
344a = 858.49 - 210.25
344a = 648.24
a = 648.24/344
Acceleration, a = 1.88 m/s²
b. To find the time;
We would use the first equation of motion;
V = U + at
29.3 = 14.5 + 1.88t
1.88t = 29.3 - 14.5
1.88t = 14.8
Time, t = 14.8/1.88
Time, t = 7.87 seconds.
E, 63% of the value. I forget the rationale behind it but I learnt that in engineering. 90% confident for that answer.