Answer:
Copper is element number 29
4th row
11th column
Answer:
r = 3.61x
M/s
Explanation:
The rate of disappearance (r) is given by the multiplication of the concentrations of the reagents, each one raised of the coefficient of the reaction.
r = k.![[S2O2^{-8} ]^{x} x [I^{-} ]^{y}](https://tex.z-dn.net/?f=%5BS2O2%5E%7B-8%7D%20%5D%5E%7Bx%7D%20x%20%5BI%5E%7B-%7D%20%5D%5E%7By%7D)
K is the constant of the reaction, and doesn't depends on the concentrations. First, let's find the coefficients x and y. Let's use the first and the second experiments, and lets divide 1º by 2º :



x = 1
Now, to find the coefficient y let's do the same for the experiments 1 and 3:




y = 1
Now, we need to calculate the constant k in whatever experiment. Using the first :


k = 4.01x10^{-3} M^{-1}s^{-1}[/tex]
Using the data given,
r = 
r = 3.61x
M/s
Answer:
60 V
Explanation:
From;
Vs/Vp = Ns/Np
Where;
Vs = voltage in the secondary coil = 6V
Vp = voltage in the primary coil= ??
Ns = number of turns in the secondary coil = 9
Np= number of turns in the primary coil = 90
6/Vp = 9/90
Vp= 90 * 6/9
Vp= 60 V
Answer:
1 mole of C2H6.
Explanation:
The balanced equation for the reaction is given below:
2C2H6 + 7O2 —> 4CO2 + 6H2O
We can determine the number of mole of C2H6 that reacted to produce 2 moles of CO2 as follow:
From the balanced equation above,
2 moles of C2H6 reacted to produce 4 moles of CO2.
Therefore, Xmol of C2H6 will react to produce 2 moles of CO2 i.e
Xmol of CO2 = (2 x 2)/4
Xmol of CO2 = 1 mole.
Therefore, 1 mole of C2H6 is required to produce 2 moles of CO2.
Answer: Alex should get 300 Calories from carbohydrates, which is about 33 grams. This snack is almost 70% of her total grams of carbohydrates per day.