That if we don’t separate our selves hundreds and thousands of people will die but if we stay apart it will resolve sooner
Answer:
This phenomenon occurs because the door, being metal and leading to changes in temperature, undergoes proportional and morphological changes, metals face expansion and expansion in the presence of heat, called thermal expansion.
On the other hand, against the cold, thermal contraction is suffered, that is why its volume decreases, and it contracts.
Explanation:
The expansion phenomenon of the door is not linear, since it increases its volume in width and height, therefore simultaneously on the entire surface.
When an area or surface expands, it does so by increasing its dimensions in the same proportion. For example, a metal sheet increases its length and width, which means an increase in area. Area dilation differs from linear dilation in that it involves an increase in area.
The area expansion coefficient is the increase in area that a body of a certain substance experiences, with an area equal to unity, as its temperature rises one degree centigrade. This coefficient is represented by the Greek letter gamma.
Regarding shrinkage, a clear example of this is when a metal foundry or a weld shrinks, sometimes it is difficult to understand with examples like these (doors) because it is little noticeable by our eyes and the dimensional changes for our perspective. it is infima.
the formula we is as follows:-
M1V1= M2V2
where
M1=1.2
V1=0.133l
V2=41l
M2=?
1.2 × 0.133 = 41 × M2
0.1596 = 41 × M2
M2 = 0.15960/41
M2 = 0.0038926829
The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
Answer: Mass of gas is 0.001 pounds.
Explanation:
Density is defined as the mass contained per unit volume.
Given : Mass of gas = ?
Density of gas =
Volume of gas = 389 ml = 0.389 L (1L=1000ml)
Putting in the values we get:
(1g =0.002 lb)
Thus the mass of gas is 0.001 pounds.