I think the correct answer from the choices listed above is the second option. When two hydrogen atoms enter the ETS as part of either NADH or FADH2, the two hydrogen atoms are split into two H+ and two electrons. Hope this answers the questions.
Answer:
0.464 L
Explanation:
Molarity (M) = number moles (n) ÷ volume (V)
According to the information given in this question:
number of moles (n) = 4.36 moles
Molarity = 9.4M
Volume = ?
Using M = n/V
9.4 = 4.36/V
9.4V = 4.36
V = 4.36/9.4
V = 0.464 L
Hence, 0.464L of water are needed the volume of water.
Explanation:
The given data is as follows.
= 98.70 kPa = 98700 Pa,
T =
= (30 + 273) K = 303 K
height (h) = 30 mm = 0.03 m (as 1 m = 100 mm)
Density = 13.534 g/mL = 
= 13534 
The relation between pressure and atmospheric pressure is as follows.
P = 
Putting the given values into the above formula as follows.
P = 
= 
= 102683.05 Pa
= 102.68 kPa
thus, we can conclude that the pressure of the given methane gas is 102.68 kPa.