(a) The ball's height <em>y</em> at time <em>t</em> is given by
<em>y</em> = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity. Solve <em>y</em> = 0 for <em>t</em> :
0 = (20 m/s) sin(40º) <em>t</em> - 1/2 <em>g t</em> ²
0 = <em>t</em> ((20 m/s) sin(40º) - 1/2 <em>g t</em> )
<em>t</em> = 0 or (20 m/s) sin(40º) - 1/2 <em>g t</em> = 0
The first time refers to where the ball is initially launched, so we omit that solution.
(20 m/s) sin(40º) = 1/2 <em>g t</em>
<em>t</em> = (40 m/s) sin(40º) / <em>g</em>
<em>t</em> ≈ 2.6 s
(b) At its maximum height, the ball has zero vertical velocity. In the vertical direction, the ball is in free fall and only subject to the downward acceleration <em>g</em>. So
0² - ((20 m/s) sin(40º))² = 2 (-<em>g</em>) <em>y</em>
where <em>y</em> in this equation refers to the maximum height of the ball. Solve for <em>y</em> :
<em>y</em> = ((20 m/s) sin(40º))² / (2<em>g</em>)
<em>y</em> ≈ 8.4 m
Explanation:
Gravitational potential energy = mgh = (5)(9.81)(7) = 343.35J.
You can find the mass of an atom by adding the number of protons and neutrons. In this case the atom has 2 protons and 3 neutrons so the mass is 5.
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
To solve this problem we will resort to the concept of angle of incidence and refraction.
Since it is a reflection on a mirror, the angle provided for refraction will be equal to that of the incidence, that is, 25 °
The angle of reflation is always perpendicular to the surface so it is necessary to find the angle with respect to it.


Therefore the angle of the reflected beam of light made with the surface normal is 65°