Answer:
Answer is A) Fermi
Explanation:
Fermi is the expressive unit for nuclear sizes. Fermi = 10^-15 meter.
Answer:
The mass of the products and reactants are the same on both sides of the equation.
The number of atoms of products and reactants are equal and hence it proves the law of conservation of mass.
.
Because the Earth's axis is not "straight up and down" as we move
around the sun.
So when we're on one side of the sun, the top pole leans slightly toward
the sun. During that time the sun shines more directly on the top half
of the Earth, and less directly on the bottom half. The people on the
top half see the sun higher in the sky, and their weather is warmer,
while the people on the bottom half see the sun lower in the sky, and
their weather is cooler.
Then, when we're on the other side of the sun, the top pole leans slightly
away from the sun. During that time the sun shines more directly on the
bottom half
of the Earth, and less directly on the top half. The people on
the bottom half see the sun higher in the sky, and their weather is warmer,
while the people on the top half see the sun lower in the sky, and their
weather is cooler.
The Earth makes the complete trip around the sun in one year, so the
people on the Earth go through this cycle of higher/lower sun and
warmer/cooler weather every year.
Answer:
Explanation:
After the collision velocity of the particle is (4î - 3ĵ)m/s . ... A particle of mass 1 kg moving with a velocity of (4i^−3j^)m/s collides with a fixed surface. ... Perfectly inelastic. D ... The common velocity of the blocks after collision is: ... A ball falls from a height of 5 m and strikes the roof of a lift. ... Stay upto date with our Newsletter! i know this is not right but just here for points see ya loser
Answer:
2.5 m/s²
Explanation:
Given,
Initial speed ( u ) = 10 m/s
Final speed ( v ) = 20 m/s
Time ( t ) = 4 seconds
To find : Acceleration ( a ) = ?
Formula : -
a = ( v - u ) / t
a = ( 20 - 10 ) / 4
= 10 / 4
= 5 / 2
a = 2.5 m/s²
Therefore,
The acceleration of the scooter is 2.5 m/s²