it decreases the density of the object the air bubbles take up space. it increases the volume of the object slightly but the objects weight remains the same, hence the objects density decreases
the answer is thermal.......
<span>Photolysis and hydrolysis. These are two methods that can be used to break down a compound into simpler substances and smaller units.
Water which is used to break the bonds of molecules and split molecules is used from hydrolysis. Hydrolysis is made of three types which include;
1. salt hydrolysis.
2. acid hydrolysis.
3. Base hydrolysis.
Photolysis is well known to use energy from light to split the molecule and the same energy is referred to as photons which are used to break builds of molecules.</span>
Answer:
I have solved your problem
Explanation:
Answer : The equilibrium concentration of
will be, (C) 
Explanation : Given,
Equilibrium constant = 14.5
Concentration of
at equilibrium = 0.15 M
Concentration of
at equilibrium = 0.36 M
The balanced equilibrium reaction is,

The expression of equilibrium constant for the reaction will be:
![K_c=\frac{[CH_3OH]}{[CO][H_2]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%5BCO%5D%5BH_2%5D%5E2%7D)
Now put all the values in this expression, we get:
![14.5=\frac{[CH_3OH]}{(0.15)\times (0.36)^2}](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B%5BCH_3OH%5D%7D%7B%280.15%29%5Ctimes%20%280.36%29%5E2%7D)
![[CH_3OH]=2.82\times 10^{-1}M](https://tex.z-dn.net/?f=%5BCH_3OH%5D%3D2.82%5Ctimes%2010%5E%7B-1%7DM)
Therefore, the equilibrium concentration of
will be, (C) 