Answer:
14) The edge dislocation is more plastic than the screw dislocation
15) So as to form kinks that are fast moving
Explanation:
14) Edge and screw dislocations are the two main types of mobile dislocations
The three dimensional core of the screw dislocation prevents the slipping of the layers (one over the other) in a BCC metal such that kinks are required to be formed first by thermal activation (heating) in order. The kinks are edge dislocation that move such that the screw dislocation moves forward
Hence, the edge dislocation is more plastic than the screw dislocation
15) The three dimensional structure of a screw dislocation acts like a wedge which resists the slipping of the layers in the BCC structure such that the screw dislocation needs to be highly thermally activated forming kinks before the surrounding layers can move.
Answer:
With an understanding of the ideal gas laws, it is now possible to apply these principles to chemical stoichiometry problems. For example, zinc metal and hydrochloric acid (hydrogen chloride dissolved in water) react to form zinc (II) chloride and hydrogen gas according to the equation shown below:
2 HCl (aq) + Zn (s) → ZnCl2 (aq) + H2 (g)
Explanation:


IF magnesium sulfide reacts with oxygen in the air it will produce
magnesium oxide + sulfur (IV) oxide
<u><em>explanation</em></u>
magnesium sulfide burn in oxygen to produce magnesium oxide and sulfur (iv) oxide according to the equation below
2MgS +3O2 →2MgO +2SO2
that is 2 moles of MgS react with 3 moles of O2 to produce 2 moles of MgO and 2 moles of SO2
The gravitational pull generates this cool thing called tidal force, which kinda pushes the water to the side closest to the moon. When the tide is high, that means the moons closer to that point than somewhere else.
Two sides will always have high tide and two sides will always have low tide.