Answer:
537 N
Explanation:
The force due to gravity of a planet is:
F = GMm / r²
where G is the universal gravitational constant
M is the mass of the planet
m is the mass of the object
and r is the distance between the object and the center of the planet
On Earth, you weigh 716 N, so:
716 N = GMm / r²
On planet X:
F = G (3M) m / (2r)²
F = 3/4 GMm / r²
F = 3/4 (716 N)
F = 537 N
<em>weight = (mass) x (gravity)</em>
Weight = (5.00 kg) x (9.81 m/s²)
weight = (5.00 x 9.81) (kg-m/s²)
<em>Weight = 49.05 Newton</em>
(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s:
Answer:
D: Increase the distance between the objects.
E: Decrease the mass of one of the objects.
B Quartz. Will be your answer of thia