We have that every gas satisfies the fundamental gas equation, PV=nRT where P is the Pressure, V is the volume of the gas, n are the moles of the gas, R is a universal constant and T is the Temperature in Kelvin. We have that PV/T=nR and during our process, the moles of the gas do not change (no argon enters or escapes our sample). See attached.
I believe it's the second option. 2 or more elements joined together such that the elements have lost their individual identity in favour of a new set of properties.
Answer:
2.1 × 10⁻¹ M
2.0 × 10⁻¹ m
Explanation:
Molarity
The molar mass of aniline (solute) is 93.13 g/mol. The moles corresponding to 3.9 g are:
3.9 g × (1 mol/93.13 g) = 0.042 mol
The volume of the solution is 200 mL (0.200 L). The molarity of aniline is:
M = 0.042 mol/0.200 L = 0.21 M = 2.1 × 10⁻¹ M
Molality
The moles of solute are 0.042 mol.
The density of the solvent is 1.05 g/mL. The mass corresponding to 200 mL is:
200 mL × 1.05 g/mL = 210 g = 0.210 kg
The molality of aniline is:
m = 0.042 mol/0.210 kg = 0.20 m = 2.0 × 10⁻¹ m
Answer:
D. 0.75 grams
Explanation:
The data given on the iridium 182 are;
The half life of the iridium 182,
= 15 years
The mass of the sample of iridium, N₀ = 3 grams
The amount left, N(t) after two half lives is given as follows;

For two half lives, t = 2 × 
∴ t = 2 × 15 = 30


∴ The amount left, N(t) = 0.75 grams
Answer:
there are four peaks in the 13c NMR (B)