Answer:
neutralization reaction! Aka: option C!
HOPE THIS HELPS! :)
Explanation:
Answer:
This strong current of warm water influences the climate of the east coast of Florida, keeping temperatures there warmer in the winter and cooler in the summer than the other southeastern states. Since the Gulf Stream also extends toward Europe, it warms western European countries as well.
Answer:
.
Explanation:
Electrons are conserved in a chemical equation.
The superscript of
indicates that each of these ions carries a charge of
. That corresponds to the shortage of one electron for each
ion.
Similarly, the superscript
on each
ion indicates a shortage of three electrons per such ion.
Assume that the coefficient of
(among the reactants) is
, and that the coefficient of
(among the reactants) is
.
.
There would thus be
silver (
) atoms and
aluminum (
) atoms on either side of the equation. Hence, the coefficient for
and
would be
and
, respectively.
.
The
ions on the left-hand side of the equation would correspond to the shortage of
electrons. On the other hand, the
ions on the right-hand side of this equation would correspond to the shortage of
electrons.
Just like atoms, electrons are also conserved in a chemical reaction. Therefore, if the left-hand side has a shortage of
electrons, the right-hand side should also be
electrons short of being neutral. On the other hand, it is already shown that the right-hand side would have a shortage of
electrons. These two expressions should have the same value. Therefore,
.
The smallest integer
and
that could satisfy this relation are
and
. The equation becomes:
.
Answer:
a. 7.8*10¹⁴ He⁺⁺ nuclei/s
b. 4000s
c. 7.7*10⁸s
Explanation:
I = 0.250mA = 2.5 * 10⁻³A
Q = 1.0C
1 e- contains 1.60 * 10⁻¹⁹C
But He⁺⁺ Carrie's 2 charge = 2 * 1.60*10⁻¹⁹C = 3.20*10⁻¹⁹C
(A).
No. Of charge per second = current passing through / charge
1 He⁺⁺ = 2.50 * 10⁻⁴ / 3.2*10⁻¹⁹C
1 He⁺⁺ = 7.8 * 10¹⁴ He⁺⁺ nuclei
(B).
I = Q / t
From this equation, we can determine the time it takes to transfer 1.0C
I = 1.0 / 2.5*10⁻⁴ = 4000s
(C).
Time it takes for 1 mol of He⁺⁺ to strike the target =?
Using Avogadro's ratio,
1.0 mole of He = (6.02 * 10²³ ions/mol ) * (1 / 7.81*10¹⁴ He ions)
Note : ions cancel out leaving the value of the answer in mols.
1.0 mol of He = 7.7 * 10⁸s
Answer:
a. 4.41 g of Urea
b. 1.5 g of Urea
Explanation:
To start the problem, we define the reaction:
2NH₃ (g) + CO₂ (g) → CH₄N₂O (s) + H₂O(l)
We only have mass of ammonia, so we assume the carbon dioxide is in excess and ammonia is the limiting reactant:
2.6 g . 1mol / 17g = 0.153 moles of ammonia
Ratio is 2:1. 2 moles of ammonia can produce 1 mol of urea
0.153 moles ammonia may produce, the half of moles
0153 /2 = 0.076 moles of urea
To state the theoretical yield we convert moles to mass:
0.076 mol . 58 g/mol = 4.41 g
That's the 100 % yield reaction
If the percent yield, was 34%:
4.41 g . 0.34 = 1.50 g of urea were produced.
Formula is (Yield produced / Theoretical yield) . 100 → Percent yield