Answer:
Yeild of CO2 is approximately 54g
Explanation:
Using reaction stoichiomety and coeeficients, and knowing O2 is limiting reactant, 54 g of CO2 is produced.
The bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Since the chemical reaction is 2CO + O₂ → 2CO₂ and the total bond energy of the products carbon dioxide CO₂ is 1,472 kJ.
Since from the chemical reaction, we have 2 moles of CO₂ which gives 1,472 kJ and there are two carbon-oxygen, C-O bonds in CO₂, then
2 × C-O bond = 1,472 kJ
1 C-O bond = 1.472 kJ/2
C-O bond = 736 kJ
So, the bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Learn more about bond energy here:
brainly.com/question/21670527
Answer:
Explanation:
By moving weather systems quickly
I think this is correct
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.