Answer:
1.3×10⁻³ M
Explanation:
Hello,
In this case, given the dissociation reaction of acetic acid:

We can write the law of mass action for it:
![Ka=\frac{[H_3O^+][CH_3CO_2^-]}{[CH_3CO_2H]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BCH_3CO_2%5E-%5D%7D%7B%5BCH_3CO_2H%5D%7D)
Of course, excluding the water as heterogeneous substances are not included. Then, in terms of the change
due to the dissociation extent, we are able to rewrite it as shown below:

Thus, via the quadratic equation or solve, we obtain the following solutions:

Obviously, the solution is 0.00133M which match with the hydronium concentration, thus, answer is: 1.3×10⁻³ M in scientific notation.
Regards.
___AlBr3 + ___K -> ___KBr + ___ Al
1 AlBr3 + 3K -> 3KBr + 1 Al
hope this helps............
Answer:
Sp3
Explanation:
Hydrocarbon can be defined as an organic compound that comprises of hydrogen and carbon only. Some examples of hydrocarbon are methane, butane, ethane, ethene, etc.
Hybridization can be defined as a phenomenon which involves the combination of two or more atomic orbitals to form the same number of hybrid orbitals, with each of the orbitals having the same shape and energy.
In Organic chemistry, ethane is considered to be a tetrahedral carbon and it's Sp3 hybridized.
A tetrahedral carbon typically comprises of four bonds that are 109. 5° apart while a linear carbon atom comprises of two (2) bonds that are 180° apart.
Hence, the molecule of ethane posses a Sp3 hybridization because it has four bonds arrange with a tetrahedral geometry.
Answer:
160.32 grams of Ca or 160 if rounded
Explanation:
Multiply moles of Ca by the conversion factor (molar mass of calcium) 40.08 g Ca/ 1 mol Ca, which then allows the cancelation of moles, leaving grams of Ca.
4 mol*40.08g/mol = 160.32 grams of Ca
please give thanks by clicking heart button :)