117 m/sec is the speed of a transverse wave in a rope of length 3. 1 m and mass 86 g under a tension of 380 n.
The wave speed v is given by
v= √τ/μ
where τ is the tension in the rope and μ is the linear mass density of the rope.
The linear mass density is the mass per unit length of rope :
μ= m / L = (0.086 kg)/(3.1 m)=0.0277 kg/m.
v=
= 117.125 m/sec (approx. 117 m/sec
In physics, a transverse wave is a wave whose oscillations are perpendicular to the direction of the wave's advance. This is in contrast to a longitudinal wave which travels in the direction of its oscillations. Water waves are an example of transverse wave.
Transverse waves commonly occur in elastic solids due to the shear stress generated; the oscillations in this case are the displacement of the solid particles away from their relaxed position, in directions perpendicular to the propagation of the wave. These displacements correspond to a local shear deformation of the material. Hence a transverse wave of this nature is called a shear wave. Since fluids cannot resist shear forces while at rest, propagation of transverse waves inside the bulk of fluids is not possible.
Learn more about Transverse waves here : brainly.com/question/13761336
#SPJ4
Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s
Answer:
The solution set of a disjunction is the union of the solution sets of the individual inequalities. A convenient way to graph a disjunction is to graph each individual inequality above the number line, then move them both onto the actual number line
Explanation:
Answer:
His gravitational potential energy will increase as well.
Explanation:
Let gpe represent gravitational potential energy.
gpe = mass × gravitational field strength × height
From the formula above, we can conclude that as the mass of a body increases, it's gpe increases too.
If you run your boat aground, the first thing you should do is to calmly assess the situation. In case you have passengers on your boat, you should have them don PFDs (personal flotation devices). Afterwards, you should turn off the engine, check if there is any damage, and generally see if everything is okay.