Answer:
Explanation:
Let the thickness of the film is t and the refractive index of the material of film is n.
When light travels through a sheet of thickness t, the optical path traveled is nt.
When the path of one of slit is covered by a sheet of thickness t, the optical path becomes
x = ( n - 1) t
As the one fringe is shift, so the optical path changed by one wavelength.
i.e., x = λ
So, λ = ( n - 1) t

distance from the Sun of 2.77 astronomical units or about 414 million km 257 million miles and orbiting period of 4.62 years
The temperature will be the pressure of 130 ka
Answer:

Explanation:
<u>Net Forces and Acceleration</u>
The second Newton's Law relates the net force
acting on an object of mass m with the acceleration a it gets. Both the net force and the acceleration are vector and have the same direction because they are proportional to each other.

According to the information given in the question, two forces are acting on the swimming student: One of 256 N pointing to the south and other to the west of 104 N. Since those forces are not aligned, we must add them like vectors as shown in the figure below.
The magnitude of the resulting force
is computed as the hypotenuse of a right triangle


The acceleration can be obtained from the formula

Note we are using only magnitudes here



Answer:
Yosef hypothesis could be stretching of rubber band depends on rubber band's width. It is difficult to stretch a wider rubber band in comparison to a narrow band.
Explanation:
Width of rubber band affect how easily it can be stretched. It is found that it is difficult to to stretch a wider rubber band in comparison to a narrow band because when rubber band is narrow less molecules will be there along its width and hence less restoring force will be there so rubber can be easily stretched. On the other hand when the rubber band is wider it means more molecules are there along its width and hence more restoring force will be there while stretching so it will be difficult to stretch a wider rubber band.