A polar bond is formed with atoms having different electronegativities. The bonding electrons are attracted more towards the atom with greater electronegativity resulting in unequal sharing of electrons. Therefore the molecule develop partial charges and becomes polar. Polar molecules have dipole moment that is the partial charge on molecules due to differences in electronegativity between atoms.
A non-polar bond is formed with atoms having the same electronegativity, hence the bonded pair of electron is shared equally between atoms. Non-polar molecules have no moment.
Note that: symmetrical molecules having polar bonds are non-polar because the dipoles of the bond exert equal and opposite effect. Hence the dipoles cancel the charges.
Example: HCl
In HCl, Cl is more electronegative therefore Cl atom pulls the electron pair of the covalent bond towards itself and develops a partial negative charge. Consequently H develops a partial positive charge. This therfore leads to the formation of a dipole.
Answer:
- AgNO₃ (aq) + KCl (aq) → AgCl (s) + KNO₃ (aq)
Explanation:
In a <em>solubility table</em> you find:
- AgNO₃ (silver nitrate) is highly soluble
- KCl (potassium chloride) is soluble
- AgCl (silver chloride) is insoluble
- KNO₃ (potassium nitrate) is soluble
In a chemical equation the states of soluble compounds is identified as aqeous, using the letter "aq" in parenthesis, and the state of insoluble compounds is identified as solid, using "s" in parenthesis.
Then, the reaction showing the states of the reactants and products is:
- AgNO₃ (aq) + KCl (aq) → AgCl (s) + KNO₃ (aq)
Im going for d i think i took this last year
Answer:
Tungsten is used for this experiment
Explanation:
This is a Thermal - equilibrium situation. we can use the equation.
Loss of Heat of the Metal = Gain of Heat by the Water

Q = mΔT
Q = heat
m = mass
ΔT = T₂ - T₁
T₂ = final temperature
T₁ = Initial temperature
Cp = Specific heat capacity
<u>Metal</u>
m = 83.8 g
T₂ = 50⁰C
T₁ = 600⁰C
Cp = 
<u>Water</u>
m = 75 g
T₂ = 50⁰C
T₁ = 30⁰C
Cp = 4.184 j.g⁻¹.⁰c⁻¹

⇒ - 83.8 x
x (50 - 600) = 75 x 4.184 x (50 - 30)
⇒
=
j.g⁻¹.⁰c⁻¹
We know specific heat capacity of Tungsten = 0.134 j.g⁻¹.⁰c⁻¹
So metal Tungsten used in this experiment
Salutations!
What causes a substance to change states of matter?
Energy causes a substance to change states of matter. A matter needs energy to melt, evaporate, boil. Remember: Energy has a sudden change, but the temperature remains absolutely the same. An example of a change in energy is when ice is melting.
Hope I helped (:
Have a great day!