Answer:
160.3g
Explanation:
We know the equation:
No of moles = mass ÷ Mass of element
We need to find the mass, so make mass the subject of the formula.
Mass = No. of moles × mass of element
Mass = 5 × 32.06
Mass = 160.3g
It is mostly used in applications that need measuring substances that would have a<span> relatively neutral pH . </span>A<span> common use is for measuring the presence of carbonic </span>acid<span> in </span>a<span> liquid. so yes its acidic</span>
Answer:
See the answers below
Explanation:
1) 100. mL of solution containing 19.5 g of NaCl (3.3M)
2) 100. mL of 3.00 M NaCl solution (3 M)
3) 150. mL of solution containing 19.5 g of NaCl (2.2 M)
4) Number 1 and 5 have the same concentration (1.5M)
MW of NaCl = 23 + 36 = 59 g
For number 3
59 g ------------------- 1 mol
19,5 g ----------------- x
x = 19.5 x 1/59 = 0.33 mol
Molarity (M) = 0.33 mol/0.150 l = 2.2 M
For number 4,
Molarity (M) = 0.33mol/0.10 l = 3.3 M
For number 5
Molarity (M) = 0.450/0.3 = 1.5 M
The chemical formula : 3HgBr₂(Mercury(II) bromide)
<h3>Further explanation</h3>
Given
The chemical formulas of Mercury and Bromine
Required
The appropriate chemical formula
Solution
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
The number of molecules is determined by the coefficient in front of the compound
the number of atoms is determined by the subscript after the atom and the coefficient
Three molecules⇒ coefficient = 3
one atom of Mercury ⇒Hg
two atoms of Bromine ⇒ Br₂
The chemical formula : 3HgBr₂
Answer:
P-positive
N-negative
E-no charge