Here we have to draw the four isomers of the compound 3-bromo-4-fluorohexane.
The four isomers of the compound is shown in the figure.
In an organic molecule the chiral -C center is that where four (4) different groups are present. In 3-bromo-4-fluorohexane the 3 and 4 positions are chiral centers. The possible isomers of a molecule can be obtained from the formula 2n. As here 2 chiral centers are present thus number of stereoisomers will be 2×2 = 4.
The four different isomers as shown in the figure are 3R-, 4R-; 3S-, 4S; 3R, 4S and 3S-, 4R- 3-bromo-4-fluorohexane.
In the 3-bromo-4-fluorohexane the functional groups are -Br, C₂H₅, -C₃H₆F and -H for 3-position and -F, -C₂H₅, -C₃H₆ and -H for 4-position respectively.
The priority of the -3 position will be Br > C₃H₆F > C₂H₅ > H and for -4 position F > C₃H₆Br > C₂H₅ > H. If the rotation from the higher priority group to lower is clockwise and anticlockwise then the S- and R- notation are used respectively. However if the -H atom is present at the horizontal position then the notation will be reverse.
Thus the four isomers of the compound is shown.
Democritus, theorized that atoms were specific to the material which they composed. In addition, Democritus believed that the atoms differed in size and shape, were in constant motion in a void, collided with each other; and during these collisions, could rebound or stick together.
<u>Explanation:</u>
- One of the main atomic theorists was Democritus, a Greek philosopher who lived in the fifth century BC. Democritus realized that if a stone was partitioned fifty-fifty, the two parts would have indistinguishable properties from the whole.
- Therefore, he contemplated that if the stone were to be constantly cut into littler and littler pieces at that point; sooner or later, there would be a piece that would be so little as to be inseparable. He called these small pieces of matter as "atomos", the Greek word for inseparable.
-
Democritus estimated that atoms were explicit to the material which they made. Also, Democritus accepted that the particles varied in size, were an inconsistent shape, crashed into one another; and during these impacts, could bounce back or stay together. Hence, changes in the matter were a consequence of separations or mixes of the atoms as they moved all through the void.
Answer:
The answer is 98.07848. We assume you are converting between grams H2SO4 and mole. You can view more details on each measurement unit: This compound is also known as Sulfuric Acid. The SI base unit for amount of substance is the mole. 1 grams H2SO4 is equal to 0.010195916576195 mole.
<u>Quick conversion chart of moles H2SO3 to grams</u>
1 moles H2SO3 to grams = 82.07908 grams
2 moles H2SO3 to grams = 164.15816 grams
3 moles H2SO3 to grams = 246.23724 grams
4 moles H2SO3 to grams = 328.31632 grams
5 moles H2SO3 to grams = 410.3954 grams
6 moles H2SO3 to grams = 492.47448 grams
7 moles H2SO3 to grams = 574.55356 grams
8 moles H2SO3 to grams = 656.63264 grams
9 moles H2SO3 to grams = 738.71172 grams
10 moles H2SO3 to grams = 820.7908 grams
Plants require pH to thrive which in turn gives us food.
It has a negative charge emits energy when it moves to a lower energy orbit from an excited state and it has the same mass as a proton