Part (a) :
H₂(g) + I₂(s) → 2 HI(g)
From given table:
G HI = + 1.3 kJ/mol
G H₂ = 0
G I₂ = 0
ΔG = G(products) - G(reactants) = 2 (1.3) = 2.6 kJ/mol
Part (b):
MnO₂(s) + 2 CO(g) → Mn(s) + 2 CO₂(g)
G MnO₂ = - 465.2
G CO = -137.16
G CO₂ = - 394.39
G Mn = 0
ΔG = G(products) - G(reactants) = (1(0) + 2*-394.39) - (-465.2 + 2*-137.16) = - 49.3 kJ/mol
Part (c):
NH₄Cl(s) → NH₃(g) + HCl(g)
ΔG = ΔH - T ΔS
ΔG = (H(products) - H(reactants)) - 298 * (S(products) - S(reactants))
= (-92.31 - 45.94) - (-314.4) - (298 k) * (192.3 + 186.8 - 94.6) J/K
= 176.15 kJ - 84.78 kJ = 91.38 kJ
B- Earth completes a full spin on its axis once every 24 hours.
Among the choices, the unit of energy is calories. Answer in 1) is D. In 2) we are given with te mass , heat and temperature change. we just need to get the heat capacity and compare it with the following metals. The calculated heat capacity is 0.46 kJ/kg K. The answer is A. iron. In 3) we can compute the heat absorbed by the formula ΔH=mCpΔT. Cp of water is 4.18 J/g K. Answer of 3) is D. In 4) the formula used in Cp=ΔH/mΔT. Answer in 4) is A. The heat of enthalpy of fusion of ice is 80 cal/g. We convert this to J/g. Answer in 5) is B.334 J/g.
They are described through the use of four physical properties or macroscopic characteristics: pressure, volume, number of particles (chemists group them by moles) and temperature.
Answer:
The four resonance structures of the phenoxide ion are shown in the image attached
The conjugate base of cyclohexanol has only one resonance contributor, while
the conjugate base of phenol has four resonance contributors.
Explanation:
In organic chemistry, it is known that structures are more stable if they possess more resonance contributors. The greater the number of contributing canonical structures, the more stable the organic specie. Since the phenoxide ion has four contributing canonical structures, it is quite much more stable than cyclohexanol having only one contributing structure to its conjugate base. Hence the PKa(acid dissociation constant) of phenol is lesser than that of cyclohexanol. The conjugate base of phenol is stabilized by resonance.