The answer is D) neutral water reacts with carbon dioxide to form an acid solution
As you know, plants are usually green<span>, which means that most other colors are absorbed. One of the most common pigments is called chlorophyll, and one of the varieties is responsible for the </span>green<span> color of plants; it strongly absorbs </span>blue<span> and </span>red<span>light, which leaves only the </span>green<span> light to make it to our eyes.</span>
Answer:
0.074m/s
Explanation:
We need the formula for conservation of momentum in a collision, this equation is given by,

Where,
= mass of ball
= mass of the person
= Velocity of ball before collision
= Velocity of the person before collision
= velocity of ball afer collision
= velocity of the person after collision
We know that after the collision, as the person as the ball have both the same velocity, then,


Re-arrenge to find
,

Our values are,
= 0.425kg
= 12m/s
= 68.5kg
= 0m/s
Substituting,


<em />
<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>
Answer:
2 in front of water and 1 in front of oxygen
Explanation:
This question is describing balancing a chemical reaction. A balanced chemical reaction has the same number of atoms of each elements on both the reactant and product side. According to the question, the reactants contains 4 atoms of oxygen. The reactants give rise to water (H20) and O2 in the products side.
This reaction is most likely the decomposition of hydrogen peroxide (H2O2) as follows:
H2O2 (l) ----> H2O (l) + O2(g)
Based on the description, H2O2 will be 2H2O2 as it is said to contain four atoms of oxygen. This means that, in order to have a balanced equation, we must place coefficient 2 in front of water and coefficient 1 in front of oxygen. That is;
2H2O2 (l) ----> 2H2O (l) + O2(g)
Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.