Explanation:
Formula which holds true for a leans with radii
and
and index refraction n is given as follows.
Since, the lens is immersed in liquid with index of refraction
. Therefore, focal length obeys the following.
and,
or,
= 32.4 cm
Using thin lens equation, we will find the focal length as follows.

Hence, image distance can be calculated as follows.


= 47.9 cm
Therefore, we can conclude that the focal length of the lens in water is 47.9 cm.
Answer:
3.75 MeV
Explanation:
The energy of the photon can be given in terms of frequency as:
E = h * f
Where h = Planck's constant
The frequency of the photon is 6 * 10^20 Hz.
The energy (in Joules) is:
E = 6.63 x10^(-34) * 6 * 10^(20)
E = 39.78 * 10^(-14) J = 3.978 * 10^(-13) J
We are given that:
1 eV = 1.06 * 10^(-19) Joules
This means that 1 Joule will be:
1 J = 1 / (1.06 * 10^(-19)
1 J = 9.434 * 10^(18) eV
=> 3.978 * 10^(-13) J = 3.978 * 10^(-13) * 9.434 * 10^(18) = 3.75 * 10^(6) eV
This is the same as 3.75 MeV.
The correct answer is not in the options, but the closest to it is option C.
THE DOPPLER EFFECT. Anyways, it would have a higher whistle as it approaches you, when it gets to you it only gets quieter because it leaves after. Think of a motorcycle going by, its loud coming to you then as it passes it gets quieter.
For Blake:
3 boxes at a distance of 10 meters each, each box weighs 20 N
Work done by Blake = 3 * 10m * 20N
= 600 J
Power = 600 J/ 2 min
= 300 J/min
For Sandra:
4 boxes, 15 N each at a distance of 12 meters each.
Work done by Sandra = 4 * 15 N *12m
= 720 J
Power = 720 J/ 4 min
= 180 J/min
Blake does less work than Sandra.
Blake's power is more than Sandra's.
The frictional force is directly proportional to the force that is perpendicular on the surface.
When the body is placed on a horizontal level with zero inclination, the only force acting on the body is the gravitational force which always pulls the body down. The gravitational force, in this case, is the perpendicular force to the surface. Accordingly, this entire force is used to generate friction
Now as the inclination of the surface increases, the gravitational force is no longer the perpendicular force of the body, its value decreases, which means only a part is used to generate frictional force. Consequently, frictional force decreases.
When the inclination reaches 90 degrees, the gravitational force does not act along the normal and accordingly, no friction force is generated.