Answer:
The displacement was 320 meters.
Explanation:
Assuming projectile motion and zero initial speed (i.e., the object was dropped, not thrown down), you can calculate the displacement using the kinematic equation:

The displacement was 320 meters.
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
A decrease in it's operating temperature would make a heat engine less efficient. This is because in order to operate, a heat engine needs to be hot and maintain that temperature.
Answer:
Yes it is
Explanation:
the sum moles at the left side equals the sum of moles at the right side
Answer:
25 x 9/5 = 45 degrees Fahrenheit
Explanation: