Answer:
To calculate molarity, divide the number of moles of solute by the volume of the solution in liters. If you don't know the number of moles of solute but you know the mass, start by finding the molar mass of the solute, which is equal to all of the molar masses of each element in the solution added together.
Explanation:
try starting with 35.0 and dived it by the volume
Answer: element.
Justification:
1) A molecule is the union of two or more atoms.
2) When two or more atoms of different elements bond together, the molecule formed is a compound.
For example: one atoms of hydrogen and one atom of chlorine form the molecule HCl, which is a compound (hydrogen chloride).
3) When the molecules is formed by two atoms of the same element, it is not called a compound, but element. Some examples of this are the diatomic gases:
H₂: hydrogen
Cl₂: chlorine
Br₂: bromine
O₂: oxygen
S₂: sulfur
N₂: nitrogen.
The moles of HCl to neutralize the sodium hydroxide produced is<u> 0.0135 mole. </u>
Neutralization or neutralization is a chemical response wherein an acid and a base react quantitatively with each other. In a reaction in water, neutralization outcomes in there being no excess of hydrogen or hydroxide ions gift in the answer.
<u>calculation:-</u>
<u />
2Na + 2H₂O -----> 2NaOH + H₂
2 mol or 46g of Na produces 80 grams of NaOH
∴ 0.31 g of Na will produce = 80/46 × 0.31
= 0.54 gram of NaOH.
mol of NaOH = 0.54/40
= 0.0135
Since both Hcl and NaOH have the same valance factor,
1 mole NaOH is needed to neutralize 1 mol HCl
∴ 0.0135 mole of NaOH will need = 0.0135 mole of HCl
mass = 0.0135 × 36.5
=<u> 0.493 grams of HCL.</u>
Learn more about neutralizing here:-brainly.com/question/23008798
#SPJ4
First, you need to convert kg to g.
So, 1 kg =1000g.
3.5 x 1000 = 3500g Ca(OH)2
We need to know the molar mass of Ca(OH)2.
Ca= 40.08 g
O=2(15.999)
H=2(1.0079)
Add them all together and you get 74.0938 g.
Put it in the formula from mass to moles.
# of moles = grams Ca(OH)2 x 1 mol Ca(OH)2
--------------------
molar mass Ca(OH)2
3500 g Ca(OH)2 x 1 mol Ca(OH)2
---------------------
74.0938 g Ca(OH)2
So divide 1/74.0938 and multiply by 3500.
You will get about 47.24 moles Ca(OH)2.
Hope this helps! :)
Answer:
A solution of acetic acid that is 60.0% HC₂H₃O₂ (by mass) indicates that it contains 60.0 g of acetic acid and 100.0 g of water.
Explanation:
A percentage is a way of expressing an amount as a fraction of 100. The mass percentage corresponds to physical units of the solutions and they allow to establish more precisely the concentration of the solutions and express them in terms of percentages.
Mass percentage indicates the amount in grams of solute per 100 grams of solution.
So a solution of acetic acid that is 60.0% HC₂H₃O₂ (by mass) indicates that it contains 60.0 g of acetic acid and 100.0 g of water.