Answer:
16.1 N
Explanation:
From the question,
F = ma.............................. Equation 1
Where F = horizontal force, m = mass of the object, a = acceleration .
Given: m = 7.0 kg, a = 2.3 m/s²
Substitute this values into equation 1
F = (7.0×2.3)
F = 16.1 N.
Hence the magnitude of the horizontal force is 16.1 N
Answer:
The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Explanation:
We know that,
Mass of electron 
Rest mass energy for electron = 0.511 Mev
(a). The energy required to accelerate an electron from 0.500c to 0.900c Mev
Using formula of rest,



(b). The energy required to accelerate an electron from 0.900c to 0.942c Mev
Using formula of rest,



Hence, The energy required to accelerate an electron is 0.582 Mev and 0.350 Mev.
Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2
Answer:
The process is given in the pic.
I have taken the average masses so u substitute the values and solve hope it will help :)❤