Answer:
s = 3 m
Explanation:
Let t be the time the accelerating car starts.
Let's assume the vehicles are point masses so that "passing" takes no time.
the position of the constant velocity and accelerating vehicles are
s = vt = 40(t + 2) cm
s = ½at² = ½(20)(t)² cm
they pass when their distance is the same
½(20)(t)² = 40(t + 2)
10t² = 40t + 80
0 = 10t² - 40t - 80
0 = t² - 4t - 8
t = (4±√(4² - 4(1)(-8))) / 2(1)
t = (4± 6.928) / 2 ignore the negative time as it has not occurred yet.
t = 5.464 s
s = 40(5.464 + 2) = 298.564 cm
300 cm when rounded to the single significant digit of the question numerals.
The force that opposes motion to moving parts is F<span>riction</span><span>
Hope this helped!
</span>
Answer:
24.8m/s
Explanation:
Given data
m1= 10kg
u1=25m/s
m2=17kg
u2=16m/s
v1=10m/s
v2=??
Applying the conservation of linear momentum
m1u1+m2u2=m1v1+m2v2
substitute
10*25+17*16=10*10+17*v2
250+272=100+17v2
522=100+17v2
522-100=17v2
422=17v2
Divide both sides by 17
v2= 422/17
v2= 24.8 m/s
Hence the velocity of the red cart is 24.8m/s in the opposite direction of the blue cart
Answer:
That is not true all objects fall at the same speed excepts things like feathers or paper.