Answer:
Explanation:
Given conditions
1)The stress on the blade is 100 MPa
2)The yield strength of the blade is 175 MPa
3)The Young’s modulus for the blade is 50 GPa
4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.
5)The temperature of the blade is 800°C.
6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)
where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Young Modulus, E = Stress,
/Strain, ∈
initial Strain, 


creep rate in the steady state


but Tinitial = 0


solving the above equation,
we get
Tfinal = 2459.82 hr
<h3><u>
Answer:</u></h3>
When a welder must certify for their appropriate welder's certifications, all of the samples are basically flat work. Simple tack welds to deep fill welds are required.
<h3><u>
Explanation:</u></h3>
If you are welding two pieces of metal together, having the work as flat as possible allows for the best access for the weld to be proper. There are often more times then not that the work will not be in a flat position so if you are really just starting out, your practice welds should be made on flat work to get the skill necessary to weld well in other positions.
When a psychologist simply records the relationship between two variables without manipulating them, it is called a correlational study.
The observed relationship does not by itself reveal which variable causes the other. This is the directionally problem. Also, the relationship may be due to a third variable controlling both of the observed variables.
Answer:
with a square cross section and length L that can support an end load of F without yielding. You also wish to minimize the amount the beam deflects under load. What is the free variable(s) (other than the material) for this design problem?
a. End load, F.
b. Length, L.
c. Beam thickness, b
d. Deflection, δ
e. Answers b and c.
f. All of the above.