1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ulleksa [173]
3 years ago
9

You are evaluating the lifetime of a turbine blade. The blade is 4 cm long and there is a gap of 0.16 cm between the tip of the

blade and the turbine housing. Given that the blade cannot hit the housing, determine the time to failure of the blade considering the following information.1)The stress on the blade is 100 MPa.2)The yield strength of the blade is 175 MPa3)The Young’s modulus for the blade is 50 GPa4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.5)The temperature of the blade is 800°C.6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K
Engineering
1 answer:
Tcecarenko [31]3 years ago
3 0

Answer:

Explanation:

Given conditions

1)The stress on the blade is 100 MPa

2)The yield strength of the blade is 175 MPa

3)The Young’s modulus for the blade is 50 GPa

4)The strain contributed by the primary creep regime (not including the initial elastic strain) was 0.25 % or 0.0025 strain, and this strain was realized in the first 4 hours.

5)The temperature of the blade is 800°C.

6)The formula for the creep rate in the steady-state regime is dε /dt = 1 x 10-5 σ4 exp (-2 eV/kT)

where: dε /dt is in cm/cm-hr σ is in MPa T is in Kelvink = 8.62 x 10-5 eV/K

Young Modulus, E = Stress, \sigma /Strain, ∈

initial Strain, \epsilon_i = \frac{\sigma}{E}

\epsilon_i = \frac{100\times 10^{6} Pa}{50\times 10^{9} Pa}

\epsilon_i = 0.002

creep rate in the steady state

\frac{\delta \epsilon}{\delta t} = (1 \times {10}^{-5})\sigma^4 exp^(\frac{-2eV}{kT} )

\frac{\epsilon_{initial} - \epsilon _{primary}}{t_{initial}-t_{final}} = 1 \times 10^{-5}(100)^{4}exp(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )(800+273)K} )

but Tinitial = 0

\epsilon_{initial} - \epsilon _{primary}} = 0.002 - 0.003 = -0.001

\frac{-0.001}{-t_{final}} = 1 \times 10^{-5}(100)^{4}\times 10^{(\frac{-2eV}{8.62\times10^{-5}(\frac{eV}{K} )1073K} )}

solving the above equation,

we get

Tfinal = 2459.82 hr

You might be interested in
Air at 293k and 1atm flow over a flat plate at 5m/s. The plate is 5m wide and 6m long. (a) Determine the boundary layer thicknes
loris [4]

Answer:

a). 8.67 x 10^{-3} m

b).0.3011 m

c).0.0719 m

d).0.2137 N

e).1.792 N

Explanation:

Given :

Temperature of air, T = 293 K

Air Velocity, U = 5 m/s

Length of the plate is L  = 6 m

Width of the plate is b = 5 m

Therefore Dynamic viscosity of air at temperature 293 K is, μ = 1.822 X 10^{-5} Pa-s

We know density of air is ρ = 1.21 kg /m^{3}

Now we can find the Reyonld no at x = 1 m from the leading edge

Re = \frac{\rho .U.x}{\mu }

Re = \frac{1.21 \times 5\times 1}{1.822\times 10^{-5} }

Re = 332052.6

Therefore the flow is laminar.

Hence boundary layer thickness is

δ = \frac{5.x}{\sqrt{Re}}

   = \frac{5\times 1}{\sqrt{332052.6}}

   = 8.67 x 10^{-3} m

a). Boundary layer thickness at x = 1 is δ = 8.67 X 10^{-3} m

b). Given Re = 100000

    Therefore the critical distance from the leading edge can be found by,

     Re = \frac{\rho .U.x}{\mu }

     100000 = \frac{1.21\times5\times x}{1.822 \times10^{-5}}

     x = 0.3011 m

c). Given x = 3 m from the leading edge

    The Reyonld no at x = 3 m from the leading edge

     Re = \frac{\rho .U.x}{\mu }

     Re = \frac{1.21 \times 5\times 3}{1.822\times 10^{-5} }

     Re = 996158.06

Therefore the flow is turbulent.

Therefore for a turbulent flow, boundary layer thickness is

    δ = \frac{0.38\times x}{Re^{\frac{1}{5}}}

       = \frac{0.38\times 3}{996158.06^{\frac{1}{5}}}

       = 0.0719 m

d). Distance from the leading edge upto which the flow will be laminar,

  Re = \frac{\rho \times U\times x}{\mu }

5 X 10^{5} = \frac{1.21 \times 5\times x}{1.822\times 10^{-5}}}

 x = 1.505 m

We know that the force acting on the plate is

F_{D} = \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

and C_{D} at x= 1.505 for a laminar flow is = \frac{1.328}{\sqrt{Re}}

                                                                         = \frac{1.328}{\sqrt{5\times10 ^{5}}}

                                                                       = 1.878 x 10^{-3}

Therefore, F_{D} =  \frac{1}{2}\times C_{D}\times \rho \times A\times U^{2}

                                          = \frac{1}{2}\times 1.878\times 10^{-3}\times 1.21\times (5\times 1.505)\times 5^{2}

                                         = 0.2137 N

e). The flow is turbulent at the end of the plate.

  Re = \frac{\rho \times U\times x}{\mu }

       = \frac{1.21 \times 5\times 6}{1.822\times 10^{-5} }

       = 1992316

Therefore C_{D} = \frac{0.072}{Re^{\frac{1}{5}}}

                                           = \frac{0.072}{1992316^{\frac{1}{5}}}

                                           = 3.95 x 10^{-3}

Therefore F_{D} = \frac{1}{2}\times C_{D}\times \rho\times A\times U^{2}

                                           = \frac{1}{2}\times 3.95\times 10^{-3}\times 1.21\times (5\times 6)\times 5^{2}

                                          = 1.792 N

3 0
3 years ago
1. Under what conditions can soils be chemically stabilized?
marshall27 [118]

Answer:

All will be Explained below.

Explanation:

1) Under which Condition can a soil be chemically Stabilize.

Answer

a). Plasticity Index :A soil with a high value of plasticity Index is not good for various engineering projects. The introduction of line helps in reducing plasticity due cation exchange reaction.Pozzolanic reaction over time reduces plasticity and increase index strength due to the formation of calcium - silicate hydrate.

7 0
3 years ago
14. A large car fire presents the possibility of
dexar [7]

Answer:

Both of the above

Explanation:

5 0
3 years ago
Read 2 more answers
Turn on your____
storchak [24]

Answer:

b

Explanation:

5 0
3 years ago
Read 2 more answers
1. ELECTRICAL SHOCK
lions [1.4K]
Here’s some of them
6. J
7. I
10. O
13. F
14. E
15. N
3 0
3 years ago
Other questions:
  • To operate a vehicle in Florida, you must
    10·2 answers
  • Run the program and observe the output to be: 55 4 250 19. Modify the numsInsert function to insert each item in sorted order. T
    14·1 answer
  • A thermal energy storage unit consists of a large rectangular channel, which is well insulated on its outer surface and encloses
    7·1 answer
  • What entrepreneurial activities do you know?are you capable of doing entrepreneurial activities
    15·1 answer
  • Show that the solution of thin airfoil theory of a symmetric airfoil given below satisfies the Kutta condition. What angle of at
    11·1 answer
  • 12. The small space above the piston in which fuel is burned is called the
    10·1 answer
  • . Carly's Catering provides meals for parties and special events. In Chapter 2, you wrote an application that prompts the user f
    10·1 answer
  • "It is better to be a human being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied. A
    7·1 answer
  • In the car industry, clay models are used to visualize and test new car designs.
    5·2 answers
  • The sum of forces on node 2 (upper-left) is ______.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!