1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nesterboy [21]
2 years ago
6

1) what is the potential energy at the end of the loop?

Physics
1 answer:
Agata [3.3K]2 years ago
8 0

At a roller coaster, energy conversions from potential to kinetic energy and back repeatedly several times across the course of a trip. Kinetic energy is the force that an object possesses as a consequence of its movement.

All moving objects possess kinetic energy, which is defined with the mass and speed of the object. Potential energy is the energy that is deposited in an object due to its position corresponding to some zero point. Gravitational potential energy is highest at the top of the looping point of a roller coaster and smallest at the deepest end.

You might be interested in
Solar winds have an influence all the way to about 160 AU from the Sun. About how many kilometers is that? 24,000,000,000 km 48,
Likurg_2 [28]

The correct answer is 24,000,000,000 km.

One AU(Astronomical Unit) is equal to 1.496 ×10⁸ kilometers.

∴ 160 AU = 160 × 1.496 ×10⁸ km

= 240 ×10⁸ Km = 24,000,000,000 km

6 0
3 years ago
Read 2 more answers
When a speeding truck hits a stationary car, the car is deformed and heat is generated. What can you say about the kinetic energ
cluponka [151]

nothing

Explanation:

we can say that it was certainly bad for the shopkeeper obviously and we should not be making questions about the physics behind that accident and should call the cops or 911

3 0
2 years ago
Describe the flow of energy that causes heat to be produced
Neporo4naja [7]
It may be produced by 
<span>Most of us use the word ‘heat’ to mean something that feels warm, but science defines heat as the flow of energy from a warm object to a cooler object.</span><span>Actually, heat energy is all around us – in volcanoes, in icebergs and in your body. All matter contains heat energy.</span><span>Heat energy is the result of the movement of tiny particles calledatoms, molecules or ions in solids, liquids and gases. Heat energy can be transferred from one object to another, and the transfer or flow due to the difference intemperature between the two objects is called heat.</span><span>For example, an ice cube has heat energy and so does a glass of lemonade. If you put the ice in the lemonade, the lemonade (which is warmer) will transfer some of its heat energy to the ice. In other words, it will heat up the ice. Eventually, the ice will melt and the lemonade and water from the ice will be the same temperature. This is known as reaching a state of thermal equilibrium.</span>Moving particles<span>Matter is all around you. It is everything in the universe – anything that has both mass andvolume and takes up space is matter. Matter exists in different physical forms – solids, liquids and gases.</span>All matter is made of tiny particles called atoms, molecules and ions. These tiny particles are always in motion – either bumping into each other or vibrating back and forth. It is the motion of particles that creates a form of energy called heat (or thermal) energy that is present in all matter.<span>Image: Particles in collision</span>The particles in solids are tightly packed and can only vibrate. The particles in liquids also vibrate but are able to move around by rolling over each other and sliding around. In gases, the particles move freely with rapid, random motion.Transferring heat energy – particles in collision<span>At higher temperatures, particles have more energy. Some of this energy can be transmitted to other particles that are at a lower temperature. For example, in the gas state, when a fast moving particle collides with a slower moving particle, it transfers some of its energy to the slower moving particle, increasing the speed of that particle.</span><span>With billions of moving particles colliding into each other, an area of high energy will slowly transfer across the material until thermal equilibrium is reached (the temperature is the same across the material).</span>Changing states by heat transferFaster moving particles ‘excite’ nearby particles. If heated sufficiently, the movement of particles in a solid increases and overcomes the bonds that hold the particles together. The substance changes its state from a solid to a liquid. If the movement of the particles increases further in the liquid, then a stage is reached where the substance changes into a gas.Three ways of transferring heat energy<span><span>All heat energy, including heat generated by fire, is transferred in different ways:<span><span>Image: Convection</span><span>Image: Conduction</span><span>Image: Radiation</span></span></span><span>Convection transfers heat energy through the air (and liquids). As the air heats up, the particles move further apart and become less dense, which causes the air to rise. Cooler air below moves in and heats up, creating a circular motion. The warm air circles and heats the room.</span><span>Conduction transfers heat energy through one substance to another when they are in direct contact. The moving molecules of a warm material can increase the energy of the molecules in a cooler material. Since particles are closer together, solids conduct heat better than liquids or gases.</span><span><span>Radiation is the heat that we feel coming from a hot object. It warms the air using heat waves (infrared waves) that radiate out from the hot object in all directions until it is absorbed by other objects. Transfer of heat byradiation travels at the speed of light and goes great distances.</span><span>With a log fire, the air in the room above the fire is heated and rises to create convection currents. The heat felt directly from the fire is transmitted to us through radiation. Conduction helps to keep a fire going by transferring heat energy directly from the wood to neighbouring wood in the fire</span></span></span>An effect of heat – expansion<span>When gases, liquids and solids are heated, they expand. As they cool, they contract or get smaller. The expansion of the gases and liquids is because the particles are moving around very fast when they are heated and are able to move further apart so they take up more room. If the gas or liquid is heated in a closed container, the particles collide with the sides of the container, and this causes pressure. The greater the number of collisions, the greater the pressure.</span><span>Sometimes when a house is on fire, the windows will explode outwards. This is because the air in the house has been heated and the excited molecules are moving at high speed around the room. They are pushing against the walls, ceiling, floor and windows. Because the windows are the weakest part of the house structure, they break and burst open, releasing the increased pressure.</span>
7 0
3 years ago
Find the position of the center of mass of the system of the sun and Jupiter? (Since Jupiter is more massive than the rest of th
8090 [49]

Answer:

r_{cm} = 0.074 m from the position of the center of the Sun

Explanation:

As we know that mass of Sun and Jupiter is given as

M_s = 1.98 \times 10^{30} kg

M_j = 1.89 \times 10^{27} kg

distance between Sun and Jupiter is given as

r = 7.78 \times 10^{11} m

now let the position of Sun is origin and position of Jupiter is given at the position same as the distance between them

so we will have

r_{cm} = \frac{M_s r_1 + M_j r_2}{M_s + M_j}

r_{cm} = \frac{1.98 \times 10^{30} (0) + (1.89 \times 10^{27})(7.78 \times 10^{11})}{1.98 \times 10^{30} + 1.89 \times 10^{27}}

r_{cm} = 0.074 m from the position of the center of the Sun

3 0
3 years ago
A car with a velocity of 6.4 m/s, forward, accelerates to a velocity of 10.6 m/s, forward, in 16 s. What is the card acceleratio
tatuchka [14]

Answer:

acceleration = 0.2625 m/s²

Explanation:

   acceleration = ( final velocity - initial velocity ) / time

Here the final velocity is  10.6 m/s and initial velocity is 6.4 m/s and time is 16 s.

using the equation:

acceleration =  ( 10.6 - 6.4 ) / 16

                     = 0.2625 m/s²

6 0
2 years ago
Read 2 more answers
Other questions:
  • 6 .sınıf fen bilimleri
    15·1 answer
  • The diagram below illustrates the law of reflection.
    15·1 answer
  • The shortest wavelengths occur in the:red end of the spectrumblue end of the spectrummiddle of the spectrum The light-gathering
    5·1 answer
  • 2. An earthquake travels at 3.8 km/s and has a wavelength of 480 m. What is the frequency of the earthquake?
    10·1 answer
  • A tracking station on Earth observes a rocket move away at 0.370c. This rocket is designed to launch a projectile at 0.505c rela
    7·1 answer
  • The furnace keeps houseAat 25◦C, while thefurnace in houseBkeeps it at 20◦C. Which house requires heat to be supplied by its fur
    7·1 answer
  • Draw the net force arrow on the picture to the left.
    11·1 answer
  • What is an example of motion
    11·1 answer
  • How many newtons is the force of gravity g , acting on an apple with mass m = 200 g?​
    11·2 answers
  • A car initially miving at 0.5m/s along a track.the car come to rest after travelling 1m.the car is repeated on the same of track
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!