Answer: v = 
Explanation: q = magnitude of electronic charge = 
mass of an electronic charge =
V= potential difference = 4V
v = velocity of electron
by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.
kinetic energy =
, potential energy = qV
hence, 

You asked the question twice I answered it on the last one
The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
ω₂=1.20
Explanation:
Given that
mass of the turn table ,M= 15 kg
mass of the ice ,m= 9 kg
radius ,r= 25 cm
Initial angular speed ,ω₁ = 0.75 rad/s
Initial mass moment of inertia



Final mass moment of inertia



Lets take final speed of the turn table after ice evaporated =ω₂ rad/s
Now by conservation angular momentum
I₁ ω₁ =ω₂ I₂

ω₂=1.20
I believe the answer should be the last option. upon interaction, both objects should have the same charge after the electrons are transferred.