<h2>Answer:</h2>
<u>By wrapping the wire along a solenoid and connecting it to electricity</u>
<h2>Explanation:</h2>
If you wrap a copper wire into coils and run an electrical current through it, you will create a magnetic field. If you rotate a permanent magnet as opposed to an item that has been magnetized inside a coil of copper wire, you can create an electrical current. The strength of magnetic field generated is proportional to the amount of current through the winding.
According to Newton's 2nd law of motion:
F = m * a where F is the force applied in Newtons, m is the mass of the object in kg, and a is the acceleration of the object in m/

.
Therefore the force applied in this situation is simply:
F = 6 kg * 2.3 m/

= 13.8 N
Hope this helps!
It will take 13
seconds for the golf ball to hit the ground. The correct answer between
all the choices given is the last choice or letter D. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
Answer:
I = 0.0025 kg.m²
Explanation:
Given that
m= 2 kg
Diameter ,d= 0.1 m
Radius ,

R=0.05 m
The moment of inertia of the cylinder about it's axis same as the disc and it is given as

Now by putting the all values

I = 0.0025 kg.m²
Therefore we can say that the moment of inertia of the cylinder will be 0.0025 kg.m².
Answer:
1. Emma standing on top of mountain
Since she is at the rest position and at some height from the ground so here energy is due to gravitational potential energy
So we have
gravitational potential energy

2. Emma jumping down from mountain top
Due to free fall Emma will start moving with some speed in downwards direction so here we have

motion energy
3. tension in rope at Emma’s lowest position
Due to stretch in the rope here position come to the lowest end and speed comes to zero so whole energy is converted into elastic potential energy

elastic potential energy
4. Emma bouncing back
Due to bouncing back she will again have its kinetic energy with some speed upwards

motion energy