1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inysia [295]
2 years ago
11

B. On a separate sheet of paper, describe the different ways of generating electric power. ​

Physics
1 answer:
Afina-wow [57]2 years ago
4 0

Answer:

These all different sources of energy add to the store of electrical power that is then sent out to different locations via high powered lines. It is the energy from the sun that is harnessed using a range of technologies such as solar heating, solar architecture, photovoltaics, and artificial photosynthesis.

Hope it helps PLS MARK ME AS BRAINLIST I BEG YOU thanks :)

You might be interested in
In Europe, gasoline efficiency is measured in km/L. If your car's gas mileage is 36.0mi/gal , how many liters of gasoline would
Zigmanuir [339]
36 \frac{mi}{gal} * \frac{1 km}{0.6214 mi}* \frac{1 gal}{3.78 L} = 15.3 \frac{km}{L}

142/15.3=9.27L
3 0
3 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
3 years ago
A vertical cylindrical tank 10 ft in diameter, has an inflow line of 0.3 ft inside diameter and an outflow line of 0.4 ft inside
neonofarm [45]

Answer:

\frac{dh}{dt} = 1.3 \times 10^{-3} \frac{ft}{s}, level is rising.

Explanation:

Since liquid water is a incompresible fluid, density can be eliminated of the equation of Mass Conservation, which is simplified as follows:

\dot V_{in} - \dot V_{out} = \frac{dV_{tank}}{dt}

\frac{\pi}{4}\cdot D_{in}^2 \cdot v_{in}-\frac{\pi}{4}\cdot D_{out}^2 \cdot v_{out}= \frac{\pi}{4}\cdot D_{tank}^{2} \cdot \frac{dh}{dt} \\D_{in}^2 \cdot v_{in} - D_{out}^2 \cdot v_{out} = D_{tank}^{2} \cdot \frac{dh}{dt} \\\frac{dh}{dt}  = \frac{D_{in}^2 \cdot v_{in} - D_{out}^2 \cdot v_{out}}{D_{tank}^{2}}

By replacing all known variables:

\frac{dh}{dt} = \frac{(0.3 ft)^{2}\cdot (5 \frac{ft}{s} ) - (0.4 ft)^{2} \cdot (2 \frac{ft}{s} )}{(10 ft)^{2}}\\\frac{dh}{dt} = 1.3 \times 10^{-3} \frac{ft}{s}

The positive sign of the rate of change of the tank level indicates a rising behaviour.

6 0
4 years ago
In the two-slit experiment, monochromatic light of frequency 5.00 × 1014 Hz passes through a pair of slits separated by 2.20 × 1
asambeis [7]

Explanation:

It is given that,

Frequency of monochromatic light, f=5\times 10^{14}\ Hz

Separation between slits, d=2.2\times 10^{-5}\ m

(a) The condition for maxima is given by :

d\ sin\theta=n\lambda

For third maxima,

\theta=sin^{-1}(\dfrac{n\lambda}{d})

\theta=sin^{-1}(\dfrac{n\lambda}{d})

\theta=sin^{-1}(\dfrac{nc}{fd})  

\theta=sin^{-1}(\dfrac{3\times 3\times 10^8\ m/s}{5\times 10^{14}\ Hz\times 2.2\times 10^{-5}\ m})  

\theta=4.69^{\circ}

(b) For second dark fringe, n = 2

d\ sin\theta=(n+1/2)\lambda

\theta=sin^{-1}(\dfrac{5\lambda}{2d})

\theta=sin^{-1}(\dfrac{5c}{2df})

\theta=sin^{-1}(\dfrac{5\times 3\times 10^8}{2\times 2.2\times 10^{-5}\times 5\times 10^{14}})

\theta=3.90^{\circ}

Hence, this is the required solution.

8 0
3 years ago
An object is 10 cm from thé mirror, its height is 1 cm and thé focal length is 5 cm. What is thé distance from thé mirror? S1= _
Viefleur [7K]
Note: I assume the mirror is concave, so that its focal length is positive (it is not specified in the text)

1a) We can use the mirror equation to find the distance of the image from the mirror:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
where 
f=5 cm is the focal length
p=10 cm is the distance of the object from the mirror
q is the distance of the image from the mirror.

Rearranging the equation, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{5}- \frac{1}{10}= \frac{1}{10 cm}
so, the distance of the image from the mirror is q=10 cm.

1b) The image height is given by the magnification equation:
\frac{h_i}{h_o}=- \frac{p}{q}
where h_i is the heigth of the image and h_o=1 cm is the height of the object. By rearranging the equation and using p and q, we find
h_i=-h_o  \frac{p}{q}=-(1 cm) \frac{10 cm}{10 cm}=-1 cm
and the negative sign means the image is inverted.

2) As before, we can find the distance of the image from the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
Rearranging it, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{2}- \frac{1}{10}= \frac{4}{10 cm}
so, the distance of the image from the mirror is
q= \frac{10}{4}cm= 2.5 cm

3) As before, we find the distance of the image from the mirror by using the mirror equation:
\frac{1}{f}= \frac{1}{p}+ \frac{1}{q}
Rearranging it, we find
\frac{1}{q}= \frac{1}{f}- \frac{1}{p}= \frac{1}{2}- \frac{1}{10}= \frac{4}{10 cm}
so, the distance of the image from the mirror is
q= \frac{10}{4}cm= 2.5 cm

And now we can use the magnification equation to find the image height:
\frac{h_i}{h_o}=- \frac{p}{q}
Rearranging it, we find
h_i=-h_o \frac{p}{q}=-(3cm) \frac{10 cm}{2.5 cm}=-12 cm
and the negative sign means the image is inverted.
5 0
3 years ago
Other questions:
  • In a pulley system, a 5-newton weight is to be lifted 2 meters. The rope is pulled 10 meters. The input force is two newtons.
    12·2 answers
  • A circuit is built based on this circuit diagram. What is the equivalent resistance of the circuit?
    6·1 answer
  • If we begin from star birth, the next key stage in the star-gas-star cycle occurs when a(n)_______ returns gas and new elements
    12·2 answers
  • Technician A says that in a series circuit, if one light goes out, the rest of the lights stay on. Technician B says that in a p
    14·1 answer
  • Object B has a mass of 8 kg and was lifted at a rate of 3 m/s. What is the kinetic energy of object B?
    5·1 answer
  • Which of the following is a common downside of net pens, one of the most common forms of aquaculture?
    15·2 answers
  • The pressure of a liquid at the 10.2 meters depth is 80100 Pascal. - What is the density of the fluid in kg/cubic meter?​
    12·1 answer
  • HELP ASAP 100 POINTS NEED ANSWERED ASAP
    14·2 answers
  • Define A Gamma Ray .....---_---__☘️​
    9·1 answer
  • Change.<br> Wax melting is an example of a chemical reaction.<br> True or false
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!