Answer:
c
Explanation:
because whatever elements are used like gas uses water evaporation so yeah
<span>(a)
Taking the angle of the pitch, 37.5°, and the particle's initial velocity, 18.0 ms^-1, we get:
18.0*cos37.5 = v_x = 14.28 ms^-1, the projectile's horizontal component.
(b)
To much the same end do we derive the vertical component:
18.0*sin37.5 = v_y = 10.96 ms^-1
Which we then divide by acceleration, a_y, to derive the time till maximal displacement,
10.96/9.8 = 1.12 s
Finally, doubling this value should yield the particle's total time with r_y > 0
<span>2.24 s
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span></span>
Answer:
(a) Elongation of the rod==5.61×10⁻⁹m
(b) Change in diameter=1.640×10⁻⁸m
Explanation:
Given data
Diameter d=78 in=1.9812 m
Cross Area is:
Applied Load P=17 KN=17×10³N
E=29 × 106 psi=1.99947961×10¹¹Pa
Stress and Strain in x direction
Stress in x direction
σ=P/A
σ=5517.25 Pa
Strain in x direction
ε=σ/E
ε=2.76×10⁻⁸
Part (a)
Elongation of the rod=Lε
=(0.2032)(2.76×10⁻⁸)
Elongation of the rod==5.61×10⁻⁹m
Part(b) Change in diameter
Strain in y direction
ε₁= -vε
ε₁= -(0.30)(2.76×10⁻⁸)
ε₁=-8.28×10⁻⁹
Change in diameter=d×ε₁
Change in diameter=(1.9812m)×(-8.28×10⁻⁹)
Change in diameter=1.640×10⁻⁸m
What models are you talking about
Answer:
It is used in MRI because it does not damage cells
Radio waves are used for space research because they have very long wavelengths
Explanation:
Many parts of the electromagnetic spectrum are applied in clinical diagnosis and treatment of illnesses. However, these highly ionizing radiation damage cells and its dosage must be carefully managed to avoid creating radiation related health problems for the patients.
Radio waves can be used in MRI without issues because the energy of the radiation is not sufficient to cause damage to cells but is sufficient to provide images for the sake of medical diagnosis.
Secondly, radio waves have long wavelength. This property is suitable for long range
communication. Hence it can be used in space research