Given Information:
Frequency of horn = f₀ = 440 Hz
Speed of sound = v = 330 m/s
Speed of bus = v₀ = 20 m/s
Answer:
Case 1. When the bus is crossing the student = 440 Hz
Case 2. When the bus is approaching the student = 414.9 Hz
Case 3. When the bus is moving away from the student = 468.4 Hz
Explanation:
There are 3 cases in this scenario:
Case 1. When the bus is crossing the student
Case 2. When the bus is approaching the student
Case 3. When the bus is moving away from the student
Let us explore each case:
Case 1. When the bus is crossing the student:
Student will hear the same frequency emitted by the horn that is 440 Hz.
f = 440 Hz
Case 2. When the bus is approaching the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330+20 )
f = 440 ( 330/ 350 )
f = 440 ( 0.943 )
f = 414.9 Hz
Case 3. When the bus is moving away from the student
f = f₀ ( v / v+v₀ )
f = 440 ( 330/ 330-20 )
f = 440 ( 330/ 310 )
f = 440 ( 1.0645 )
f = 468.4 Hz
Answer:
b
Explanation:
n = m(g +a)
n= normal force (N)
m=mass (kg)
g=acceleration of gravity
a= acceleration of elevator
rearrange:
a= n/m - g
a= (810 N/73 kg) - 9.8 m/s ^2
a= 1.3 m/s ^2 up
and the acceleration is upwards bc her weight is less than the scale reading
Answer:0.3meters
Explanation:
wavelength=velocity ➗ frequency
wavelength=300.80 ➗ 1030.80
Wavelength=0.3m
Answer:
v = 19.6 m/s.
Explanation:
Given that,
The radius of the circle, r = 5 m
The time period of the ball, T = 1.6s
We need to find the ball's tangential velocity.
The formula for the tangential velocity is given by :

Putting all the values in the above formula

So, the tangential velocity of the ball is 19.6 m/s. Hence, the correct option is (c).
The second major reason for the difference in gravity at differentlatitudes is that the Earth's equatorial bulge (itself also caused by centrifugalforce from rotation) causes objects at the Equator to be farther from the planet's centre than objects at the poles.