Answer: In classical physics terms, you do work on an object when you exert a force on ... One Newton is the force required to accelerate one kilogram of mass at 1 meter per second per second. ... The Newton-meters are termed joules (J). ... of the working object is transferred to that object raising its energy state.
Explanation:
A water molecule, because of its shape, is a polar molecule.
Answer:
87.9%
Explanation:
Balanced Chemical Equation:
HCl + NaOH = NaCl + H2O
We are Given:
Mass of H2O = 9.17 g
Mass of HCl = 21.1 g
Mass of NaOH = 43.6 g
First, calculate the moles of both HCl and NaOH:
Moles of HCl: 21.1 g of HCl x 1 mole of HCl/36.46 g of HCl = 0.579 moles
Moles of NaOH: 43.6 g of NaOH x 1 mole of NaOH/40.00 g of NaOH = 1.09 moles
Here you calculate the mole of H2O from the moles of both HCl and NaOH using the balanced chemical equation:
Moles of H2O from the moles of HCl: 0.579 moles of HCl x 1 mole of H2O/1 mole of HCl = 0.579 moles
Moles of H2O from the moles of NaOH: 1.09 moles of HCl x 1 mole of H2O/1 mole of NaOH = 1.09 moles
From the calculations above, we can see that the limiting reagent is HCl because it produced the lower amount of moles of H2O. Therefore, we use 0.579 moles and NOT 1.09 moles to calculate the mass of H2O:
Mass of H2O: 0.579 moles of H2O x 18.02 g of H2O/1 mole of H2O = 10.43 g
% yield of H2O = actual yield/theoretical yield x 100= 9.17 g/10.43 g x 100 = 87.9%
So this is p1 over t1 = p2 over t2. So you do 880/250=x/303 and then cross multiply and divide
If you would draw the Lewis structures of these atoms, you would see that A has 2 electron pairs and 2 lone electrons (that can bond). For B you’d see that you only have 1 electron that can form a bond. This means that 1 atom of A (2 lone electrons) can bond with 2 atoms of B. To know the kind of bond you have to know wether or not there will be a ‘donation’ of an electron from one atom to another. This happens when the number of electrons on one atoms is equal to the number of electrons another atom needs to reach the noble gas structure. As you can see, this is not the case here. This means that you get an AB2 structure with covalent character.