Answer:

Step-by-step explanation:
<u>Exponential Growth
</u>
The natural growth of some magnitudes can be modeled by the equation:

Where P is the actual amount of the magnitude, Po is its initial amount, r is the growth rate and t is the time.
The initial number of bacteria is Po=40 and it doubles (P=2Po) at t=20 min. With that point we can find the value of r:

Simplifying:

Solving for 1+r:
![1+r=\sqrt[20]{2}](https://tex.z-dn.net/?f=1%2Br%3D%5Csqrt%5B20%5D%7B2%7D)

The exponential function that models the situation is:

Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
He will need 24 more hours. Hopefully helpful
Answer:
C) y = 2.50x + 10
Step-by-step explanation:
Equation C is saying:
total cost = 2.50(number of games) + $10 entery fee
Hope this helps :)