Answer:

Explanation:
As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet
So here we will have

here we have


here we have

now we can find time period as




Now the density is given as



Explanation:
It is given that,
Wavelength of red laser light, 
The second order fringe is formed at an angle of, 
For diffraction grating,

, n = 2


The wavelength λ of light that creates a first-order fringe at 22 is given by :




Hence, this is the required solution.
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 
Answer:
200 m\ s Ans .....
Explanation:
Data:
f = 200 Hz
w = 1.0 m
v = ?
Formula:
v = f w
Solution:
v = ( 200)(1.0)
v = 200 m\s <em>A</em><em>n</em><em>s</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
Answer:
3 meters per second
Explanation:
72 divided by 3= 24 meters in 8 seconds
24/8= 3, so 3 meters per second