Answer:
so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
Explanation:
As we know that the air friction or resistance due to air is neglected then we can use the equation of kinematics here

since we released it from rest so we have

so here we have

now if the distance is double then we have

now from above two equations we can say that

so the speed will increase by 1.44 times then the initial speed if the distance is increased to double
“a point representing the mean position of the matter in a body or system.”
Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
lmoooooi9okkkkjghedjydthaksidhqelzyakx
Um what are the ten objects..?