1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sidana [21]
2 years ago
10

Compare and contrast camera obscura with what you know about modern digital photography, including cell phones.

Physics
2 answers:
Sonja [21]2 years ago
5 0

Answer:

It captures images but does not preserve them.

Ugo [173]2 years ago
5 0
A camera obscura is a darkened room. For making pictures there was a small hole in one wall which allowed an image of the outside scene to project onto the opposite wall, where an artist would draw the outlines of the scenery objects by tracing around the significant lines in the image.
You might be interested in
An artificial satellite is in a circular orbit around a planet of radius r= 2.05 x103 km at a distance d 310.0 km from the plane
lubasha [3.4K]

Answer:

\rho = 12580.7 kg/m^3

Explanation:

As we know that the satellite revolves around the planet then the centripetal force for the satellite is due to gravitational attraction force of the planet

So here we will have

F = \frac{GMm}{(r + h)^2}

here we have

F =\frac {mv^2}{(r+ h)}

\frac{mv^2}{r + h} = \frac{GMm}{(r + h)^2}

here we have

v = \sqrt{\frac{GM}{(r + h)}}

now we can find time period as

T = \frac{2\pi (r + h)}{v}

T = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{GM}{(r + h)}}}

1.15 \times 3600 = \frac{2\pi (2.05 \times 10^6 + 310 \times 10^3)}{\sqrt{\frac{(6.67 \times 10^{-11})(M)}{(2.05 \times 10^6 + 310 \times 10^3)}}}

M = 4.54 \times 10^{23} kg

Now the density is given as

\rho = \frac{M}{\frac{4}{3}\pi r^3}

\rho = \frac{4.54 \times 10^{23}}{\frac{4}[3}\pi(2.05 \times 10^6)^3}

\rho = 12580.7 kg/m^3

8 0
3 years ago
Red laser light from a He-Ne laser (λ = 632.8 nm) creates a second-order fringe at 53.2° after passing through the grating. What
Svetlanka [38]

Explanation:

It is given that,

Wavelength of red laser light, \lambda=632.8\ nm=632.8\times 10^{-9}\ m

The second order fringe is formed at an angle of, \theta=53.2^{\circ}

For diffraction grating,

d\ sin\theta=n\lambda

d=\dfrac{n\lambda}{sin\theta}, n = 2

d=\dfrac{2\times 632.8\times 10^{-9}}{sin(53.2)}

d=1.58\times 10^{-6}\ m

The wavelength λ of light that creates a first-order fringe at 22 is given by :

\lambda=d\ sin\theta

\lambda=1.58\times 10^{-6}\ sin(22)

\lambda=5.91\times 10^{-7}\ m

\lambda=591\ nm

Hence, this is the required solution.

6 0
4 years ago
Me ajudem, Por favor!!!!!!
zzz [600]

Answer:

a)  a=4\,\frac{m}{s^2}

b)  V(t)=4\,t\,+3

c)  V(1)=7 \,\frac{m}{s} \\

d)  Displacement = 22 m

e)  Average speed = 11 m/s

Explanation:

a)

Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

slope= \frac{15=3}{3-0} =4\,\frac{m}{s^2}

Therefore,  acceleration is a=4\,\frac{m}{s^2}

b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

y=m\,x+b\\V(t)=4\,t\,+3

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

V(t)= 4\,t+3\\V(1)=4\,(1)+3\\V(1)=7 \,\frac{m}{s}

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):

Displacement = \frac{(7+15)\,2}{2} = 22\,\,m

e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:

Average velocity = \frac{22}{2} = 11\, \,\frac{m}{s}

3 0
3 years ago
A transverse wave has a frequency of 200 Hz with a wavelength of 1.0 m. Determine the speed
Lana71 [14]

Answer:

200 m\ s Ans .....

Explanation:

Data:

f = 200 Hz

w = 1.0 m

v = ?

Formula:

v = f w

Solution:

v = ( 200)(1.0)

v = 200 m\s <em>A</em><em>n</em><em>s</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>

7 0
3 years ago
Paula ran a total of 72meters directly toward school at a constant velocity. She ran one-third of that distance in 8seconds. Wha
Nezavi [6.7K]

Answer:

3 meters per second

Explanation:

72 divided by 3= 24 meters in 8 seconds

24/8= 3, so 3 meters per second

3 0
3 years ago
Other questions:
  • A 1 530-kg automobile has a wheel base (the distance between the axles) of 2.70 m. The automobile's center of mass is on the cen
    13·1 answer
  • How do human break N2 into a useable form
    14·1 answer
  • Often, waves are said to be "out of phase" with one another. This means that one wave is shifted so that the peaks and troughs a
    6·2 answers
  • Electron kinetic energies are often measured in units of electron-volts (1 eV 1.6 x 10-19 J), which is the kinetic energy of an
    9·1 answer
  • A jet on an aircraft carrier can be launched from rest to 40 m/s in 2 seconds. What is the acceleration of the aircraft? Show st
    14·1 answer
  • How long will it take Matthew to jog 321 m at 5.8m/s?
    11·1 answer
  • A bird of mass 1.5 kg is flying at 8 m/s at a height of 50 m above the ground. What is its
    14·1 answer
  • Perhaps you have attended a party where balloons floated. A balloon filled with air does not rise above your head, but a balloon
    7·1 answer
  • There are pros and cons to both e-readers and paper books. Do you think the pros outweigh the cons more for modern electronic re
    12·1 answer
  • An airplane accelerates from a velocity of 22 m/s to 40 m/s with an acceleration of 2 m/s2. How long does it
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!