Answer: The statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Explanation:
Kinetic energy is the energy obtained due to the motion of an object or substance.

where,
T = temperature
This means that kinetic energy is directly proportional to temperature.
So, when heat is provided to container A then its molecules will start to move rapidly from one place to another which will cause more collisions between the atoms.
Hence, average kinetic energy will be more in container A.
Whereas container B is placed at room temperature which is low than that in container A. So, molecules in container B will move at almost same speed and therefore, specific collisions will be there. So, average kinetic energy in container B will be less than that in container A.
Thus, we can conclude that the statement, average kinetic energy of the gas particles is greater in container A because its particles move faster is correct.
Answer:
Sorry
Explanation:
Sorry this is not chemistry but I always try to answer but this time I can't I am so so sorry
The balanced equation is:

Then proceed with the following equations.

The answer is

.
Atomic number refers to the proton number of the atom itself. Number of electrons in an atom (an atom that is not reacted with any other molecules / Just the atom alone), is the same as the number of protons, because each electron has 1 negative charge, and each proton 1 positive charge, where they cancel out on each other to become a neutral charge.
So, when atomic number is 6, proton number is also 6, and number of electrons will also be 6 in that atom.
Hope this helps! :)