Answer:
2.4m/s towards the bowling pins
Explanation:
Given parameters:
Mass of the ball = 6.6kg
Momentum of the ball = 15.9kgm/s
Unknown:
Speed of the ball = ?
Solution:
The momentum is the amount of motion a body posses;
Momentum = mas x velocity
Insert the parameters and solve;
15.9 = 6.6 x velocity
velocity = 2.4m/s towards the bowling pins
Answer:

Explanation:
Given data:
Mass of the man, 
Total mechanical energy, 
Height, 
Suppose there is no external force acting on the man. In this situation, the total mechanical energy (kinetic + potential) will remain steady.
Let the speed of the man at 2.6 m be <em>v</em>.
Thus,




<h3>Iron - Fe</h3>
<h3>Hydrochloric Acid- HCl</h3>
<h2><u>Solution</u></h2>


Iron + Hydrochloric Acid
Ferrous Chloride + Hydrogen
<h2>
Hope This Helps You ❤️</h2>
The Energy flux from Star B is 16 times of the energy flux from Star A.
We have Two stars - A and B with 4900 k and 9900 k surface temperatures.
We have to determine how many times larger is the energy flux from Star B compared to the energy flux from Star A.
<h3>State Stephen's Law?</h3>
Stephens law states that if E is the energy radiated away from the star in the form of electromagnetic radiation, T is the surface temperature of the star, and σ is a constant known as the Stephan-Boltzmann constant then-

Now -
Energy emitted per unit surface area of Star is called Energy flux. Let us denote it by E. Then -

Now -
For Star A →
= 4900 K
For Star B →
= 9900 K
Therefore -

2.02 = 2 (Approx.)
Now -
Assume that the energy flux of Star A is E(A) and that of Star B is E(B). Then -

E(B) = E(A) x 
E(B) = E(A) x 
E(B) = 16 E(A)
Hence, the Energy flux from Star B is 16 times of the energy flux from Star A.
To learn more about Stars, visit the link below-
brainly.com/question/13451162
#SPJ4