The glassware with the highest degree of accuracy is 250 mL beaker.
<h3>What is accuracy?</h3>
When in an experiment, a value is measured 5 times, then if the values measured are same for most of the time or like three times out of five, it said to be accurate. The phenomenon is accuracy.
Accuracy compares the experimental value to the theoretical value.
Accepted density of water = 0.99 g/mL
1. 10 mL cylinder
Mass of water = 6.76 g
Volume of water = 6.8 mL
Density = mass /Volume
density = 6.76/6.8 = 0.99412 g/mL
Percentage error = [Observed value - Accepted value/ Accepted value ] x 100
% error = [0.99412 - 0.99 / 0.99 ] x 100
% error = 0.416 %
2. 50 mL cylinder
Mass of water = 24 g
Volume of water = 24.2 mL
density = 24/24.2 = 0.9917 g/mL
Percentage error = [Observed value - Accepted value/ Accepted value ] x 100
% error = [0.9917 - 0.99 / 0.99 ] x 100
% error = 0.172 %
3. 25 mL cylinder
Mass of water = 17 g
Volume of water = 17.1 mL
density = 17/17.1 = 0.99415 g/mL
Percentage error = [Observed value - Accepted value/ Accepted value ] x 100
% error = [0.99415 - 0.99 / 0.99 ] x 100
% error = 0.419 %
4. 250 mL beaker
Mass of water = 35 g
Volume of water = 35.3 mL
density = 35/35.3 = 0.9915 g/mL
Percentage error = [Observed value - Accepted value/ Accepted value ] x 100
% error = [0.9915 - 0.99 / 0.99 ] x 100
% error = 0.152 %
Lesser the percentage error, higher is the accuracy.
Thus, 250 mL beaker has the highest degree of accuracy.
Learn more about accuracy.
brainly.com/question/13099041
#SPJ1