<span>
Evaporation occurred between the reaction of the hydrochloric acid and the arsenic group because there is a formation of gas. A
liquid is cooled if condensation exceeds evaporation. This is because the cooling of the liquid decreases the kinetic energy of the
molecules. Their movement is being restricted by the colder temperature. The
molecules tend to be closer with each other. Also, because of their restricted
movement, the liquid may turn into solid due the colder temperature. An example
of this is the cooling of liquid water by placing it into the refrigerator into
solid water (ice).</span>
SO₄²⁻ +NH₃ → SO₃²⁻ + H₂O +N₂
The balanced of the above redox reaction is as below
3SO₄²⁻ + 2NH₃ → 3SO₃²⁻ + 3 H₂O + N₂
Explanation
According to the law of mass conservation the number of atoms in the reactant side must be equal to number of atoms in product side.
Inserting coefficient 3 in front of SO₄² , 2 in front of NH₃, 3 in front of SO₃²⁻ and 3 in front of H₂O balance the equation above. This is because the number of atoms are equal in both side.
for example there are 2 atoms of N in both side of the reaction.
Answer:
Explanation:
The strong bases have following properties:
1. In solution, strong bases ionize fully.
2. On dissolving the strong bases in water they produce all hydroxide ion which they have.
3. For strong bases the value of equilibrium constant (Kb ) is large.
4. In general the strong base ionizes completely means concentration of ions are greater means conductivity also greater.
5. For strong bases the value of equilibrium constant (Kb) is large, thus the value of dG0 is very large negative number.
1 to 1. Most small atoms have the same number of protons and neutrons
Methane is the compound CH4, and burning it uses the reaction:
CH4 + O2 -> CO2 + H2O, which is rather exothermic. To find the heat released by burning a certain amount of the substance, you should look at the bond enthalpy of each compound, and then compare the values before and after the reaction. In methane, there are 4 C-H bonds, which have bond energy of 416 kj/mol, resulting in a total bond energy of 1664 kj/mol. O2 is 494 kj/mol. Therefore we have a total of 2080 kj/mol on the left side. On the right side we have CO2, which has 2 C=O bonds, each at 799 kj/mol each, resulting in 1598 kj/mol, and H2O has 2 O-H bonds, at 459kj/mol each, resulting in a total of 2516 kj/mol on the right hand side. Now, this may be confusing because the left hand side seems to have less heat than the right, but you just need to remember: making minus breaking, which results in a total change of 436kj/mol heat evolved.
Now it is a simple matter of find the mols of CH4 reacted, using n=m/mr.
n = 9.5/16.042 = 0.592195 mol
Therefore, if we reacted 0.592195 mol, and we produced 436 kj for one mol, the total amount of energy evolved was 436*<span>0.592195 kj, or 258.197 kj.</span>